In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmeth...In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.展开更多
This paper presents a design of optimal controllers with respect to a meaningful cost function to force an underactuated omni-directional intelligent navigator (ODIN) under unknown constant environmental loads to tr...This paper presents a design of optimal controllers with respect to a meaningful cost function to force an underactuated omni-directional intelligent navigator (ODIN) under unknown constant environmental loads to track a reference trajectory in two-dimensional space. Motivated by the vehicle's steering practice, the yaw angle regarded as a virtual control plus the surge thrust force are used to force the position of the vehicle to globally track its reference trajectory. The control design is based on several recent results developed for inverse optimal control and stability analysis of nonlinear systems, a new design of bounded disturbance observers, and backstepping and Lyapunov's direct methods. Both state- and output-feedback control designs are addressed. Simulations are included to illustrate the effectiveness of the proposed results.展开更多
In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent v...In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.展开更多
研究了n比特随机量子系统实时状态估计及其反馈控制的问题.对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况,基于在线交替方向乘子法(Online alternating direction multiplier method,OADM)推导出一种适用于...研究了n比特随机量子系统实时状态估计及其反馈控制的问题.对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况,基于在线交替方向乘子法(Online alternating direction multiplier method,OADM)推导出一种适用于n比特随机量子系统的实时量子状态估计算法,即QSE-OADM (Quantum state estimation based on OADM).运用李雅普诺夫方法设计控制律,实现基于实时量子状态估计的反馈控制,并证明所提控制律的收敛性.以2比特随机量子系统为例进行数值仿真实验,通过与基于QST-OADM (Quantum state tomography based on OADM)算法和OPG-ADMM (Online proximal gradient-based alternating direction method of multipliers)算法的量子反馈控制方案的性能对比,验证了所提控制方案的优越性.展开更多
As the proportion of converter-interfaced renewable energy resources in the power system is increasing,the strength of the power grid at the connection point of wind turbine generators(WTGs)is gradually weakening.Exis...As the proportion of converter-interfaced renewable energy resources in the power system is increasing,the strength of the power grid at the connection point of wind turbine generators(WTGs)is gradually weakening.Existing research has shown that when connected with the weak grid,the stability of the traditional grid-following controlled converters will deteriorate,and they are prone to unstable phenomena such as oscillation.Due to the limitations of linear analysis that cannot sufficiently capture the stability phenomena,transient stability must be investigated.So far,standalone time-domain simulations or analytical Lyapunov stability criteria have been used to investigate transient stability.However,the time-domain simulations have proven to be computationally too heavy,while analytical methods are difficult to formulate for larger systems,require many modelling assumptions,and are often conservative in estimating the stability boundary.This paper proposes and demonstrates an innovative approach to estimating the transient stability boundary via combining the linear Lyapunov function and the reverse-time trajectory technique.The proposed methodology eliminates the need of time-consuming simulations and the conservative nature of Lyapunov functions.This study brings out the clear distinction between the stability boundaries with different post-fault active current ramp rate controls.At the same time,it provides a new perspective on critical clearing time for wind turbine systems.The stability boundary is verified using time-domain simulation studies.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 10735030Shanghai Leading Academic Discipline Project under Grant No. B412+2 种基金National Natural Science Foundation of China under Grant No. 90718041Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0734K.C. Wong Magna Fund in Ningbo University
文摘In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.
基金Supported in Part by the Australian Research Council under Grant DP0988424
文摘This paper presents a design of optimal controllers with respect to a meaningful cost function to force an underactuated omni-directional intelligent navigator (ODIN) under unknown constant environmental loads to track a reference trajectory in two-dimensional space. Motivated by the vehicle's steering practice, the yaw angle regarded as a virtual control plus the surge thrust force are used to force the position of the vehicle to globally track its reference trajectory. The control design is based on several recent results developed for inverse optimal control and stability analysis of nonlinear systems, a new design of bounded disturbance observers, and backstepping and Lyapunov's direct methods. Both state- and output-feedback control designs are addressed. Simulations are included to illustrate the effectiveness of the proposed results.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10772152)
文摘In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.
文摘研究了n比特随机量子系统实时状态估计及其反馈控制的问题.对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况,基于在线交替方向乘子法(Online alternating direction multiplier method,OADM)推导出一种适用于n比特随机量子系统的实时量子状态估计算法,即QSE-OADM (Quantum state estimation based on OADM).运用李雅普诺夫方法设计控制律,实现基于实时量子状态估计的反馈控制,并证明所提控制律的收敛性.以2比特随机量子系统为例进行数值仿真实验,通过与基于QST-OADM (Quantum state tomography based on OADM)算法和OPG-ADMM (Online proximal gradient-based alternating direction method of multipliers)算法的量子反馈控制方案的性能对比,验证了所提控制方案的优越性.
文摘As the proportion of converter-interfaced renewable energy resources in the power system is increasing,the strength of the power grid at the connection point of wind turbine generators(WTGs)is gradually weakening.Existing research has shown that when connected with the weak grid,the stability of the traditional grid-following controlled converters will deteriorate,and they are prone to unstable phenomena such as oscillation.Due to the limitations of linear analysis that cannot sufficiently capture the stability phenomena,transient stability must be investigated.So far,standalone time-domain simulations or analytical Lyapunov stability criteria have been used to investigate transient stability.However,the time-domain simulations have proven to be computationally too heavy,while analytical methods are difficult to formulate for larger systems,require many modelling assumptions,and are often conservative in estimating the stability boundary.This paper proposes and demonstrates an innovative approach to estimating the transient stability boundary via combining the linear Lyapunov function and the reverse-time trajectory technique.The proposed methodology eliminates the need of time-consuming simulations and the conservative nature of Lyapunov functions.This study brings out the clear distinction between the stability boundaries with different post-fault active current ramp rate controls.At the same time,it provides a new perspective on critical clearing time for wind turbine systems.The stability boundary is verified using time-domain simulation studies.