期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Chilling Tolerance of Cucumber During Germination is Related to Expression of Lysine Decarboxylase Gene 被引量:1
1
作者 LU Ming-hui LI Xiao-ming CHEN Jin-feng CHEN Long-zheng QIAN Chun-tao 《Agricultural Sciences in China》 CAS CSCD 2005年第12期898-902,共5页
Using cDNA-AFLP technique, a specific fragment was isolated from cucumber cultivar Changchun mici possessing chilling tolerance induced at low temperature (15℃). This fragment, named cctr 132, could not be induced ... Using cDNA-AFLP technique, a specific fragment was isolated from cucumber cultivar Changchun mici possessing chilling tolerance induced at low temperature (15℃). This fragment, named cctr 132, could not be induced in the chilling sensitive cucumber cultivar Beijing jietou. After recovering the fragment, sequencing and translating, the results of blastx and blastp in GenBank of NCBI indicated that CCTR132 had 88.37% identities and 100% positives with Oryza sativa putative lysine decarboxylase-like protein respectively, and PGGXGTXXE, the putative conserved domain of lysine decarboxylase family, was detected from CCTR132, suggesting the cucumber chilling tolerance during germination is related to the expression of the lysine decarboxylase gene. 展开更多
关键词 CUCUMBER Chilling tolerance CDNA-AFLP lysine decarboxylase CADAVERINE
下载PDF
Ionic-microenvironment stabilizes the disulfide engineered lysine decarboxylase for efficient cadaverine production 被引量:1
2
作者 Zhuang Li Yaju Xue +1 位作者 Xiuling Ji Yuhong Huang 《Green Chemical Engineering》 EI CSCD 2023年第2期224-232,共9页
Cadaverine is the key monomer for the synthesis of nylon 5X.Efficient and alkaline stable lysine decarboxylases are highly desirable for cadaverine production as the reaction pH increasing from 6.3 to 8.5.However,the ... Cadaverine is the key monomer for the synthesis of nylon 5X.Efficient and alkaline stable lysine decarboxylases are highly desirable for cadaverine production as the reaction pH increasing from 6.3 to 8.5.However,the most studied lysine decarboxylase CadA(E.coli)lost almost all activity at pH 8.0,which is the foremost challenge for the industrial-cadaverine production.In this study,we first found that the Na^(+)-microenvironment significantly improved the alkaline stability of the disulfide engineered lysine decarboxylaseΔLdcEt3(P233C/L628C)(half-life 362 h),compared to the conventional buffer(half-life 0.66 h)at pH 8.0.Meanwhile,the whole-cell conversion efficiency of the industrial-grade L-lysine withΔLdcEt3 could reach up to 99%in 2 h in the fermenter.Experi-mental investigation and molecular dynamics confirmed that Na^(+)-microenvironment could improve active-aggregation state and affect secondary structure ofΔLdcEt3.Therefore,Na^(+)-microenvironment stabilizesΔLdcEt3 providing a great potential industrial application for high-level cadaverine production. 展开更多
关键词 Na^(+)-microenvironment lysine decarboxylase ΔLdcEt3 Alkaline stability CADAVERINE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部