As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated...As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head(59.2 nm in length, 31.9 nm in width) and a tail(43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at p H 5.0–9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.展开更多
There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of ‘bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, ...There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of ‘bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well(Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specifi c disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay(Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes–from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.展开更多
Exogenous Vitreoscilla globin gene (vgb), lytic genes of phage A with S amber mutation (S-RRz) and poly(B-hydroxybutyrate) (PHB) biosynthetic genes (phbCAB) were cloned into a same Escherichia coli cell, simultaneousl...Exogenous Vitreoscilla globin gene (vgb), lytic genes of phage A with S amber mutation (S-RRz) and poly(B-hydroxybutyrate) (PHB) biosynthetic genes (phbCAB) were cloned into a same Escherichia coli cell, simultaneously or respectively. Six novel strains containing phbCAB and vgb with or without lytic genes were constructed. Strain VG1 (pTU14), in which vgb, phbCAB and S-RRz could all be successfully expressed, has superior characteristics in cell growth and PHB accumulation, while the results of strains containing vgb and phbCAB without S- RRz were not better than that of strains harbored ph&CAB only. The simultaneous expression of vgb and S- RRz in the recombinant VG1 (pTU14) showed a great potential for low-cost production of PHB.展开更多
基金supported by the National Natural Science Foundation of China (31160121)the Yunnan Provincial Education Fund project (2013Z138)funded by the Open Research Fund Program of the State Key Laboratory of Virology of China (2013002)
文摘As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head(59.2 nm in length, 31.9 nm in width) and a tail(43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at p H 5.0–9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.
文摘There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of ‘bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well(Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specifi c disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay(Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes–from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.
基金Supported by the National Natural Science Foundation of China (No. 29834103, 29876021).
文摘Exogenous Vitreoscilla globin gene (vgb), lytic genes of phage A with S amber mutation (S-RRz) and poly(B-hydroxybutyrate) (PHB) biosynthetic genes (phbCAB) were cloned into a same Escherichia coli cell, simultaneously or respectively. Six novel strains containing phbCAB and vgb with or without lytic genes were constructed. Strain VG1 (pTU14), in which vgb, phbCAB and S-RRz could all be successfully expressed, has superior characteristics in cell growth and PHB accumulation, while the results of strains containing vgb and phbCAB without S- RRz were not better than that of strains harbored ph&CAB only. The simultaneous expression of vgb and S- RRz in the recombinant VG1 (pTU14) showed a great potential for low-cost production of PHB.