期刊文献+
共找到456篇文章
< 1 2 23 >
每页显示 20 50 100
Horizontal crustal movement in Chinese mainland before and after the great Kunlun Mountain M=8.1 earthquake in 2001
1
作者 顾国华 张晶 王武星 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第6期676-685,共10页
The continuous GPS observation at the fiducial stations in the Crustal Movement Observation Network of China (CMONOC) recorded the crustal movement of Chinese mainland before and after the great Kunlun Mountain earthq... The continuous GPS observation at the fiducial stations in the Crustal Movement Observation Network of China (CMONOC) recorded the crustal movement of Chinese mainland before and after the great Kunlun Mountain earthquake of M=8.1 on November 14, 2001, especially the horizontal crustal movement in the western part of China. Based on the datum defined by a group of stable stations with small mutual horizontal displacements for a few years, the time series of horizontal displacements at fiducial stations were obtained. Significant anomalous horizontal displacements had appeared at the fiducial stations in the western part of China since early November 2000 and several earthquakes with the magnitudes about 6.0 had occurred in Yunnan and Sichuan Provinces. The northward components of the horizontal displacement at the fiducial stations in west China had decreased signifi-cantly and even changed in the opposite sense since mid April 2001. After the earthquake, the northward dis-placements still decreased and there were significant westward displacements. The process of the crustal move-ment in the western part of Chinese mainland (in reference to east China) suggests that the main force source for this earthquake came from the northward pushing of the Indian plate. The great earthquake released a large amount of energy, as a result, the action applied by the Indian plate to Chinese mainland diminished significantly and after the great earthquake, the seismic activity in Chinese mainland decreased considerably until the end of 2002. 展开更多
关键词 crustal movement GPS earthquake prediction great Kunlun mountain earthquake of m=8.1 time series
下载PDF
The 2024 M_(j) 7.6 Noto Peninsula, Japan earthquake caused by the fluid flow in the crust
2
作者 Yuzo Ishikawa Ling Bai 《Earthquake Research Advances》 CSCD 2024年第3期1-6,共6页
On January 1, 2024 at 16:10:09 JST, an M_(j) 7.6 earthquake struck the Noto Peninsula in the southern part of the Sea of Japan. This location has been experiencing an earthquake swarm for more than three years. Here, ... On January 1, 2024 at 16:10:09 JST, an M_(j) 7.6 earthquake struck the Noto Peninsula in the southern part of the Sea of Japan. This location has been experiencing an earthquake swarm for more than three years. Here, we provide an overview of this earthquake, focusing on the slip distribution of the mainshock and its relationship with the preceding swarm. We also reexamined the source areas of other large earthquakes that occurred around the Sea of Japan in the past and compared them with the Matsushiro earthquake swarm in central Japan from1964 to 1968. The difference between the Matsushiro earthquake swarm and the Noto earthquake swarm is the surrounding stress field. The Matsushiro earthquake swarm was a strike-slip stress field, so the cracks in the crust were oriented vertically. This allowed fluids seeped from the depths to rise and flow out to the surface. On the other hand, the Noto area was a reverse fault stress field. Therefore, the cracks in the earth's crust were oriented horizontally. Fluids flowing underground in deep areas could not rise and spread over a wide area in the horizontal plane. This may have caused a large amount of fluid to accumulate underground, triggering a large earthquake. Although our proposed mechanism does not take into account other complex geological conditions into consideration, it may provide a simple way to explain why the Noto swarm is followed by a large earthquake while other swarms are not. 展开更多
关键词 The m 7.6 Noto Peninsular earthquake earthquake swarm Fluid triggering Strike-slip fault Reverse fault
下载PDF
Astronomic background of global huge earthquakes at beginning of 21st century
3
作者 Hu Hui Su You-Jin 《Applied Geophysics》 SCIE CSCD 2024年第3期423-432,616,共11页
Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is... Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is used to systematically analyze the effects of astronomical factors,such as solar activity,Earth’s rotation,lunar declination angle,celestial tidal force,and other phenomena on M≥8 global earthquakes at the beginning of the 21st century.With regard to solar activity,this study focuses on the analysis of the 11-year and century cycles of solar activity.The causal relationship of the Earth’s rotation is not obvious in this work and previous works;in contrast,the valley period of the solar activity century cycle may be an important astronomical factor leading to the frequent occurrence of global earthquakes at the beginning of the 21st century.This topic warrants further study. 展开更多
关键词 m≥8.0 earthquake astronomical factors solar activity Earth’s rotation lunar declination angle tidal force phenomena
下载PDF
Preliminary analysis on characteristics of coseismic deformation associated with M_S=8.1 western Kunlunshan Pass earthquake in 2001 被引量:34
4
作者 单新建 柳稼航 马超 《地震学报》 CSCD 北大核心 2004年第5期474-480,共7页
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism... Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of MS=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm. 展开更多
关键词 合成孔径雷达干涉技术 昆仑山口西8.1级地震 同震形变场
下载PDF
Focal mechanism of Luding M 6.8 earthquake, September 2022 and analysis of the loading role of the tectonic stress on the seismogenic fault
5
作者 Yansong Hu Zhenyue Li +1 位作者 Ruifeng Liu Zibo Wang 《Earthquake Research Advances》 CSCD 2023年第3期1-10,共10页
To reveal the seismogenic mechanism of the Luding earthquake, we employed the 118 China Seismic Network stations to collect the P-wave polarity data from each station, which was then used in the P-wave first motion ap... To reveal the seismogenic mechanism of the Luding earthquake, we employed the 118 China Seismic Network stations to collect the P-wave polarity data from each station, which was then used in the P-wave first motion approach to calculate the focal mechanism solution of the M6.8 Luding earthquake that occurred on September 5,2022. We have also studied the loading effect of tectonic stress on the Luding earthquake fault based on the stress field data for the research area. The results indicate that this earthquake was a strike-slip type, the nodal plane I:strike 167°, dip angle 78°, slip angle 2°;Nodal plane II: strike 77°, dip angle 88°, slip angle 168°. The two fault planes’ instability coefficients of the Luding earthquake are examined considering the region’s background stress field’s condition. The nodal plane I in the Moho circle is discovered to practically coincide with the Coulomb failure line and the tangent point of the Moho circle, indicating that this nodal plane has a high instability coefficient compared to the nodal plane II. The conclusion is that the nodal plane I has a higher likelihood of being the seismogenic fault plane, which is congruent with the seismogenic fault plane suggested by the aftershock distribution, the earthquake radiation energy distribution of a single station, and seismic intensity distribution.The Luding earthquake’s focal mechanism is highly like the theoretical focal mechanism of the fault situated at the location where the Coulomb failure line intersects the Mohr circle, demonstrating that background stress is what caused the earthquake. The substantial fault instability and similarity between the solved and theoretical focal mechanisms make it easier to comprehend the loading effect of tectonic stress on the Luding earthquake fault. 展开更多
关键词 Luding m 6.8 earthquake P-wave first motion Focal mechanism Background stress
下载PDF
Preliminary analysis on characteristics of coseismic deformation associated with MS=8.1 western Kunlunshan Pass earthquake in 2001 被引量:11
6
作者 SHAN Xin-jian(单新建) +3 位作者 LIU Jia-hang(柳稼航) MA Chao(马超) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第5期526-533,共8页
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism... Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of MS=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm. 展开更多
关键词 INSAR m_S=8.1 western Kunlunshan Pass earthquake coseismic deformation
下载PDF
Gravity variation before Kunlun mountain pass western M_s=8.1 earthquake 被引量:2
7
作者 祝意青 王双绪 +3 位作者 江在森 朱桂芝 李辉 张永志 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第3期304-311,共8页
The relation between the gravity variation features and Ms=8.1 earthquake in Qinghai-Xizang monitoring area is analyzed preliminarily, by using spatial dynamic variation results of regional gravity field from absolute... The relation between the gravity variation features and Ms=8.1 earthquake in Qinghai-Xizang monitoring area is analyzed preliminarily, by using spatial dynamic variation results of regional gravity field from absolute gravity and relative gravity observation in 1998 and 2000. The results show that: 1) Ms=8.1 earthquake in Kulun mountain pass western occurred in the gravity variation high gradient near gravit/s high negative variation; 2) The main tectonic deformation and energy accumulation before Ms=8.1 earthquake are distributed at south side of the epicenter; 3) The range of gravity's high negative variation at east of the Ms=8.1 earthquake epicenter relatively coincides with that rupture region according to field geology investigation; 4) Gravity variation distribution in high negative value region is just consistent with the second shear strain's high value region of strain field obtained from GPS observation. 展开更多
关键词 absolute gravity relative gravity ms=8.1 earthquake tectonic deformation
下载PDF
Decomposing InSAR LOS displacement into co-seismic dislocation with a linear in-terpolation model: A case study of the Kunlun Mountain M_s=8.1 earthquake 被引量:2
8
作者 马超 单新建 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第1期100-107,共8页
It has always been a difficult problem to extract horizontal and vertical displacement components from the InSAR LOS (Line of Sight) displacement since the advent of monitoring ground surface deformation with InSAR ... It has always been a difficult problem to extract horizontal and vertical displacement components from the InSAR LOS (Line of Sight) displacement since the advent of monitoring ground surface deformation with InSAR technique. Having tried to fit the firsthand field investigation data with a least squares model and obtained a preliminary result, this paper, based on the previous field data and the InSAR data, presents a linear cubic interpolation model which well fits the feature of earthquake fracture zone. This model inherits the precision of investigation data; moreover make use of some advantages of the InSAR technique, such as quasi-real time observation, continuous recording and all-weather measurement. Accordingly, by means of the model this paper presents a method to decompose the InSAR slant range co-seismic displacement (i.e. LOS change) into horizontal and vertical displacement components. Approaching the real motion step by step, finally a serial of curves representing the co-seismic horizontal and vertical displacement component along the main earthquake fracture zone are approximately obtained. 展开更多
关键词 InSAR (Interferometry Synthetic Aperture Radar) least squares fiting linear interpolation LOS co-seismic dislocation Kunlun mountain ms=8.1 earthquake
下载PDF
Effect of Kunlun Ms 8.1 earthquake on crustal deformation in northeastern edge region of Qinghal-Tibet plateau 被引量:2
9
作者 Duxin Cui Qingliang Wang Wenping Wang 《Geodesy and Geodynamics》 2010年第1期34-41,共8页
Seismic fault parameters can be inversed with Okada model based on deformation data before and after earthquakes in focal region and its adjacent area. Co-seismic displacements can be simulated by using these paramete... Seismic fault parameters can be inversed with Okada model based on deformation data before and after earthquakes in focal region and its adjacent area. Co-seismic displacements can be simulated by using these parameters,and then regional velocity field obtained by deducting the co-seismic displacements from the observed displacements by GPS method. We processed and analyzed the data in the northeastern edge region of the Qinghai-Tibet plateau observed during 2001 -2003 in two steps: firstly, the displacements generated by Kunlun MsS. 1 earthquake of 2001 in this region was simulated, and secondly, deducted the co-seismic displacements from it and obtained the horizontal crustal velocity field. The results reveal : 1 ) the effect of Kunlun Ms8.1 earthquake on crustal deformation in this region is significant; 2 )the velocity field obtained with this method is better than the original GPS velocity field in reflecting the status of regional crustal movement and strain. 展开更多
关键词 northeastern edge of the Qinghai-Tibet block co-seismic displacement GPS velocity field Kunlun ms8.1 earthquake crustal movement
下载PDF
Viscoelastic relaxation of the upper mantle and afterslip following the 2014 M_(W)8.1 Iquique earthquake 被引量:1
10
作者 Zhiping Hu Yan Hu Segun Steven Bodunde 《Earthquake Research Advances》 CSCD 2021年第1期34-40,共7页
An improved understanding of postseismic crustal deformation following large subduction earthquakes may help to better understand the rheological properties of upper mantle and the slip behavior of subduction interfac... An improved understanding of postseismic crustal deformation following large subduction earthquakes may help to better understand the rheological properties of upper mantle and the slip behavior of subduction interface.Here we construct a three-dimensional viscoelastic finite element model to study the postseismic deformation of the 2014 M_(W)8.1 Iquique,Chile earthquake.Elastic units in the model include the subducting slab,continental and oceanic lithospheres.Rheological units include the mantle wedge,the oceanic asthenosphere and upper mantle.We use a 2 km thick weak shear zone attached to the subduction fault to simulate the time-dependent stress-driven afterslip.The viscoelastic relaxation in the rheological units is represented by the Burgers rheology.We carry out grid-searches on the shear zone viscosity,thickness and viscosity of the asthenosphere,and they are determined to be 10^(17)Pa s,110 km and 2×10^(18)Pa s,respectively.The stress-driven afterlsip within the first two years is up to~47 cm and becomes negligible after two years(no more than 5 cm/yr).Our results suggest that a thin,low-viscosity oceanic asthenosphere together with a weak shear zone attached to the fault are required to better reproduce the observed postseismic deformation. 展开更多
关键词 2014 m_(W)8.1 Iquique earthquake Postseismic viscoelastic relaxation AFTERSLIP Finite element model Lithosphere geodynamics Upper mantle rheology
下载PDF
A discussion on Corioli force effect and aftershock activity tendency of the M=8.1 Kunlun Mountain Pass earthquake on Nov. 14, 2001
11
作者 吕坚 高建华 +2 位作者 刘吉夫 胡翠娥 黄双凤 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第4期459-467,共9页
Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statist... Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statistical research on relationship between the Corioli force effect and the maximum aftershock magnitude of 20 earthquakes with M7.5 in Chinese mainland, and then the variation tendency of aftershock activity of the M=8.1 earthquake is discussed. The result shows: a) Analyzing the Corioli force effect is an effective method to predict maximum aftershock magnitude of large earthquakes in Chinese mainland. For the sinistral slip fault and the reverse fault with its hanging wall moving toward the right side of the cross-focus meridian plane, their Corioli force pulls the two fault walls apart, decreasing frictional resistance on fault plane during the fault movement and releasing elastic energy of the mainshock fully, so the maximum magnitude of aftershocks would be low. For the dextral slip fault, its Corioli force presses the two walls against each other and increases the frictional resistance on fault plane, prohibiting energy release of the mainshock, so the maximum magnitude of aftershocks would be high. b) The fault of the M=8.1 Kunlun Mountain earthquake on Nov. 14, 2001 is essentially a sinistral strike-slip fault, and the Corioli force pulled the two fault walls apart. Magnitude of the induced stress is about 0.06 MPa. After a comparison analysis, we suggest that the aftershock activity level will not be high in the late period of this earthquake sequence, and the maximum magnitude of the whole aftershocks sequence is estimated to be about 6.0. 展开更多
关键词 Corioli force effect aftershock magnitude m=8.1 Kunlun mountain Pass earthquake Chinese mainland
下载PDF
Study on rupture zone of the M=8.1 Kunlun Mountain earthquake using fault-zone trapped waves
12
作者 李松林 张先康 樊计昌 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2005年第1期43-52,共10页
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated ... The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface. 展开更多
关键词 fault-zone trapped waves m=8.1 Kunlun mountain earthquake seismic rupture plane
下载PDF
Seismicity anomalies before the great earthquake of M_S=8.1 in the Kunlun Pass and its significance to earthquake prediction
13
作者 刘蒲雄 郑大林 +3 位作者 车时 潘怀文 刘桂萍 杨立明 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第2期219-225,共7页
A great earthquake of MS=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is lo-cated at 36.2N and 90.9E. The analysis shows that some main precursory seismic patterns appear before the gr... A great earthquake of MS=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is lo-cated at 36.2N and 90.9E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of MS=8.1 exhibits a course very similar to that found for earthquake cases with MS7. The difference is that anomalous seismicity before the earthquake of MS=8.1 involves in the lar-ger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and fore-casting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes. 展开更多
关键词 SEISmICITY earthquake prediction great Kunlun Pass earthquake of mS=8.1
下载PDF
The NE Directed Seismicity Belt in Tibet after the M_S8.1 Nepal Earthquake and Its Predictive Significance
14
作者 Wang Shuangxu Zhu Liangyu +2 位作者 Xu Jing Ji Lingyun Jiang Fengyun 《Earthquake Research in China》 CSCD 2018年第1期119-129,共11页
After the 2015 M_S8. 1 Nepal earthquake,a strong and moderate seismicity belt has formed in Tibet gradually spreading along the northeast direction. In this paper,we attempt to summarize the features and investigate t... After the 2015 M_S8. 1 Nepal earthquake,a strong and moderate seismicity belt has formed in Tibet gradually spreading along the northeast direction. In this paper,we attempt to summarize the features and investigate the primary mechanism of this behavior of seismic activity,using a 2-D finite element numerical model with tectonic dynamic settings and GPS horizontal displacements as the constraints. In addition,compared with the NEtrending seismicity belt triggered by the 1996 Xiatongmoin earthquake,we discuss the future earthquake hazard in and around Tibet. Our results show that: the NE-directed seismicity belt is the response of enhanced loading on the anisotropic Qinghai-Tibetan plateau from the Indian plate and earthquake thrusting. Also,this possibly implies that a forthcoming strong earthquake may fill in the gaps in the NE-directed seismicity belt or enhance the seismic hazard in the eastern( the north-south seismic zone) and western( Tianshan tectonic region) parts near the NE-directed belt. 展开更多
关键词 The 2015 m S8.1 Nepal earthquake Qinghai-Tibetan plateau NE-directed SEISmICITY BELT PREDICTIVE SIGNIFICANCE
下载PDF
Characteristics of Collapses Caused by the M8.1 Earthquake West of the Kunlun Mountains Pass
15
作者 WangZanjun DangGuangming TianQinjian 《Earthquake Research in China》 2003年第4期352-363,共12页
An M 8.1 earthquake that occurred west of the Kunlun Mountains Pass has caused more than 20 collapse bodies or zones, which are mainly distributed near the surface seismic rupture zone, west of Hoh Sai Lake. The colla... An M 8.1 earthquake that occurred west of the Kunlun Mountains Pass has caused more than 20 collapse bodies or zones, which are mainly distributed near the surface seismic rupture zone, west of Hoh Sai Lake. The collapses are of four types, bedrock, soil mass and ice mass collapses and avalanches. The spatial distribution and the characteristics of development of the collapses are analyzed in the paper. Comparised with those caused by other earthquakes, the collapses are smaller in scale. In addition to the lithological characteristics of the crustal media, topographic, geomorphic and climatic factors, weaker seismic ground motion is an important cause for formation of the smaller-scale collapses. The long surface rupture zone and weaker ground motion are important features of the seismic rupture, which may be related to the structure of the preexisting fault. 展开更多
关键词 Kunlun mountains Pass The m 8.1 earthquake Seismic collapse Geographic environment
下载PDF
The Frozen Soils and Devastating Characteristics of West Kunlun Mountains Pass M_S 8.1 Earthquake Area in 2001
16
作者 ChenYongming WangLanmin +2 位作者 DaiWei WangWeifeng DaiHuaguang 《Earthquake Research in China》 2004年第4期337-347,共11页
The investigation on damages to frozen soil sites during the West Kunlun Mountains Pass earthquake with M S 8.1 in 2001 shows that the frozen soil in the seismic area is composed mainly of moraine, alluvial deposit, d... The investigation on damages to frozen soil sites during the West Kunlun Mountains Pass earthquake with M S 8.1 in 2001 shows that the frozen soil in the seismic area is composed mainly of moraine, alluvial deposit, diluvial deposit and lacustrine deposit with the depth varying greatly along the earthquake rupture zone. The deformation and rupture of frozen soil sites are mainly in the form of coseismic fracture zones caused by tectonic motion and fissures, liquefaction, seismic subsidence and collapse resulting from ground motion. The earthquake fracture zones on the surface are main brittle deformations, which, under the effect of sinistral strike-slip movement, are represented by shear fissures, tensional cracks and compressive bulges. The distribution and configuration patterns of deformation and rupture such as fissures, liquefaction, seismic subsidence and landslides are all related to the ambient rock and soil conditions of the earthquake area. The distribution of earthquake damage is characterized by large-scale rupture zones, rapid intensity attenuation along the Qinghai-Xizang (Tibet) Highway, where buildings distribute and predominant effect of rock and soil conditions. 展开更多
关键词 The West Kunlun mountains Pass m S8.1 earthquake Frozen soil Devastating characteristics
下载PDF
Influence of the Kunlun Mountain M_S8.1 Earthquake on Horizontal Crustal Deformation in the Sichuan and Yunnan Area
17
作者 Yang Guohua Jiang Zaiseng +4 位作者 Zhang Fengshuang Liu Xia Han Yueping Shen Wuchun Wang Li 《Earthquake Research in China》 2007年第3期269-280,共12页
In order to track the space-time variation of regional strain field holistically(in a large scale) and to describe the regional movement field more objectively,the paper uses a nonlinear continuous strain model focuse... In order to track the space-time variation of regional strain field holistically(in a large scale) and to describe the regional movement field more objectively,the paper uses a nonlinear continuous strain model focused on extracting medium-low frequency strain information on the basis of a region with no rotation.According to the repeated measurements(1999~2001~2004) from GPS monitoring stations in the Sichuan and Yunnan area obtained by the Project of "China Crust Movement Measuring Network",and with the movement of 1999~2001(stage deformation background) as the basic reference,we separated the main influencing factors of the Kunlun Mountain M-S8.1 earthquake in 2001 from the data of 2001 and 2004,and the results indicate:(1) the Kunlun Mountain M-S8.1 earthquake has a discriminating effect on the Sichuan and Yunnan area,moreover,the deformation mode and background had not only certain similitude but also some diversity;(2) The movement field before the earthquake was very ordinal,while after the earthquake,order and disorder existed simultaneously in the displacement field;The displacement quantities of GPS monitoring stations were generally several millimeters;(3) The principal strain field before earthquake was basically tensile in an approximate EW direction and compressive in the SN direction,and tension was predominant.After the earthquake,the principal strain field in the Sichuan area was compressive in the EW direction and tensile in the SN direction,and the compression was predominant.In the Yunnan area,it was tensional in the NE direction and compressive in the NW direction,and tension was predominant;(4) The surficial strain before the earthquake was dominated by superficial expansion,the contractive area being located basically in the east boundary of Sichuan and Yunnan block and its neighborhood.After the earthquake,the Sichuan area was surface contractive(the further north,the greater it was),and south of it was an area of superficial expansion.Generally speaking,the Kunlun Mountain M-S8.1 earthquake played an active role in the accumulation of energy in the Sichuan and Yunnan area.Special attention shall be focused on the segment of Xichang-Dongchuan and its neighborhood. 展开更多
关键词 ms 8.1 Kunlun mountain earthquake Sichuan and Yunnan area GPS Horizontal movement and strain earthquake risk
下载PDF
Characteristics of Far-field Precursory Anomalies Before the M_S8.1 Earthquake in the West of Kunlun Mountains Pass
18
作者 Chen Yuhua Dong Zhiping +1 位作者 Wang Peiling Li Yongqiang 《Earthquake Research in China》 2009年第3期354-371,共18页
In this study, a number of typical precursory anomalies recorded by stations in Qinghai, Gansu, Sichuan, Xinjiang, Ningxia, Hebei and Shaanxi provinces and autonomous regions before the Ms8.1 earthquake in the west of... In this study, a number of typical precursory anomalies recorded by stations in Qinghai, Gansu, Sichuan, Xinjiang, Ningxia, Hebei and Shaanxi provinces and autonomous regions before the Ms8.1 earthquake in the west of Kunlun Mountains Pass are collected and checked. According to the standards of earthquake cases in China, the criteria of the precursory anomalies are determined, and 53 distinguished. The characteristics of these anomalies before the Ms S. 1 earthquake are analyzed, with results showing a very large earthquake affected area. The precursory anomalies recorded by instruments were 2900 km away from the epicenter, and according to the study in this paper, reached 2100 km away. The results also show that the anomalies present characteristics of long duration, multi-measurement items and large-amplitude variation. The authors believe that in large earthquake monitoring, attention should be paid to the variation of data over a large area, ranging up to thousands kilometers, with much denser earthquake observation networks. 展开更多
关键词 West of Kunlun mountains Pass ms8.1 earthquake Typical precursoryanomalies Analysis of anomaly characteristics
下载PDF
泸定M S6.8地震震前变形特征及鲜水河断裂南东段地震活动性 被引量:1
19
作者 申星 梁洪宝 宋成科 《大地测量与地球动力学》 CSCD 北大核心 2024年第1期69-74,共6页
针对鲜水河断裂带南东段的历史地震活动性和近10 a该断裂带上发生的中小震群展布特征,利用GNSS观测数据给出2022年泸定M S6.8地震震源区及周边区域的速度场、应变率场,识别此次地震震前的变形特征。GNSS速度场显示,鲜水河断裂带南东段... 针对鲜水河断裂带南东段的历史地震活动性和近10 a该断裂带上发生的中小震群展布特征,利用GNSS观测数据给出2022年泸定M S6.8地震震源区及周边区域的速度场、应变率场,识别此次地震震前的变形特征。GNSS速度场显示,鲜水河断裂带南东段走滑速率约为10 mm/a,区域整体运动为ES向,与断裂构造运动具有一致性;应变率场结果显示,发震断裂仍存在较强的剪切应变积累,汶川特大地震后随着应变能不断释放,龙门山断裂带的卸载作用间接影响鲜水河断裂带的南东段,该断裂长期处于应变积累高值的过渡区,现今仍具有较高的断层闭锁状态,该地区的地震活动趋势和地震危险性值得进一步关注和研究。 展开更多
关键词 泸定6.8级地震 鲜水河断裂带 地震活动性 应变率场
下载PDF
2001年新疆昆仑山M_(S)8.1地震前地脉动参数异常变化
20
作者 李志雄 周雯 +1 位作者 施春花 卢启明 《地震地磁观测与研究》 2023年第S01期106-108,共3页
1研究背景。冯德益等(1994)研究发现,在中强地震发生前后地震波参数和地脉动参数都会有各种异常形态出现,且短周期地脉动参数异常可用于地震短期预报。李志雄等(2008)编制了海南数字地脉动参数处理系统,系统自动计算2005—2007年海南地... 1研究背景。冯德益等(1994)研究发现,在中强地震发生前后地震波参数和地脉动参数都会有各种异常形态出现,且短周期地脉动参数异常可用于地震短期预报。李志雄等(2008)编制了海南数字地脉动参数处理系统,系统自动计算2005—2007年海南地震台网各个台站的地脉动参数,发现在海南及邻区显著地震前和地震活动活跃时地脉动参数有一定异常变化。 展开更多
关键词 昆仑山m_(S)8.1地震 地脉动参数 异常变化 空间线性度 方位角
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部