BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen...BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen prognostic risk factors for T4N0M0 colon cancer and construct a prognostic nomogram model for these patients.METHODS Two hundred patients with T4N0M0 colon cancer were treated at Tianjin Medical University General Hospital between January 2017 and December 2021,of which 112 patients were assigned to the training cohort,and the remaining 88 patients were assigned to the validation cohort.Differences between the training and validation groups were analyzed.The training cohort was subjected to multi-variate analysis to select prognostic risk factors for T4N0M0 colon cancer,followed by the construction of a nomogram model.RESULTS The 3-year overall survival(OS)rates were 86.2%and 74.4%for the training and validation cohorts,respectively.Enterostomy(P=0.000),T stage(P=0.001),right hemicolon(P=0.025),irregular review(P=0.040),and carbohydrate antigen 199(CA199)(P=0.011)were independent risk factors of OS in patients with T4N0M0 colon cancer.A nomogram model with good concordance and accuracy was constructed.CONCLUSION Enterostomy,T stage,right hemicolon,irregular review,and CA199 were independent risk factors for OS in patients with T4N0M0 colon cancer.The nomogram model exhibited good agreement and accuracy.展开更多
The reliability and availability of the reactor protection system (RPS) can be improved by using M out of N judg- ment system. By analyzing two quantitative indicators, the rate of refusal to operate and mal-operati...The reliability and availability of the reactor protection system (RPS) can be improved by using M out of N judg- ment system. By analyzing two quantitative indicators, the rate of refusal to operate and mal-operation rate, a strict math- ematical formula and an approximate calculation are stated. The differences of a series of judgment systems are discussed on condition that the unsafe failure probability and the security failure probability are both 0.1. Based on given parameters (A, B,P, Q): A is upper limit of the refusal rate for the RPS, B is upper limit of the real-operation rate, P and Q are basic protection unit rates corresponding to refusal rate and mal-operation rate, respectively. According to these parameters, the values of N and M can be solved.展开更多
H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
The CLT code was used to quantitatively study the impact of toroidal mode coupling on the explosive dynamics of the m/n=3/1 double tearing mode.The focus of this study was on explosive reconnection processes,in which ...The CLT code was used to quantitatively study the impact of toroidal mode coupling on the explosive dynamics of the m/n=3/1 double tearing mode.The focus of this study was on explosive reconnection processes,in which the energy bursts and the main mode no longer dominates when the separation between two rational surfaces is relatively large in the medium range.The development of higher m and n modes is facilitated by a relatively large separation between two rational surfaces,a small q_(min)(the minimum value of the safety factor),or low resistivity.The relationships between the higher m and n mode development,explosive reconnection rate,and position exchange of 3/1 islands are summarized for the first time.Separation plays a more important role than q_(min)in enhancing the development of higher m and n modes.At a relatively large separation,the good development of higher m and n modes greatly reduces the reconnection rate and suppresses the development of the main mode,resulting in the main mode not being able to develop sufficiently large to generate the position changes of 3/1 islands.展开更多
N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insi...N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.展开更多
The study carried out on the waters of the Méné River led to an overall assessment of its water quality during the dry season and the rainy season. The analysis focused on eight (8) water samples taken from ...The study carried out on the waters of the Méné River led to an overall assessment of its water quality during the dry season and the rainy season. The analysis focused on eight (8) water samples taken from the river during a period of dry season (January-February) and a period of rainy season (June and September). The various physicochemical parameters were measured according to Afnor standardized methods. The readings of temperature, turbidity, pH and conductivity made it possible to account for the disturbances occurring in water quality. A temporal variation correlated with the seasons (dry or rainy) is noted. Turbidity depends on the concentration of suspended solids (SS) in the water and drained particles and therefore on the seasons. Just like the temperature, the conductivity changes with the season. The waters of the Méné River are generally acidic. The results obtained show that there is a low level of pollution by chlorides, phosphates, nitrites and nitrates. A slight pollution of the waters of Méné in organic matter (chemical oxygen demand values are less than 25 mg∙L−1 during dry season and 32.33 ± 4.73 mg∙L−1 during rainy season) was observed. The concentrations of metallic trace elements such as iron, manganese and aluminum indicate significant pollution of these waters by these elements. Overall, the waters of the Méné River are of satisfactory quality because all the physicochemical parameters analyzed have values below standards during the dry season as well as during the rainy season with the exception of COD and a few metallic trace elements.展开更多
BACKGROUND Endoscopic submucosal dissection(ESD)and surgical resection are the standard of care for cT1N0M0 esophageal cancer(EC),whereas definitive chemoradiotherapy(d-CRT)is a treatment option.Nevertheless,the compa...BACKGROUND Endoscopic submucosal dissection(ESD)and surgical resection are the standard of care for cT1N0M0 esophageal cancer(EC),whereas definitive chemoradiotherapy(d-CRT)is a treatment option.Nevertheless,the comparative efficiency and safety of ESD,surgery and d-CRT for cT1N0M0 EC remain unclear.AIM To compare the efficiency and safety of ESD,surgery and d-CRT for cT1N0M0 EC.METHODS We retrospectively analyzed the hospitalized data of a total of 472 consecutive patients with cT1N0M0 EC treated at Sun Yat-sen University Cancer center between 2017-2019 and followed up until October 30th,2022.We analyzed demographic,medical recorded,histopathologic characteristics,imaging and endoscopic,and follow-up data.The Kaplan-Meier method and Cox proportional hazards modeling were used to analyze the difference of survival outcome by treatments.Inverse probability of treatment weighting(IPTW)was used to minimize potential confounding factors.RESULTS We retrospectively analyzed patients who underwent ESD(n=99)or surgery(n=220)or d-CRT(n=16)at the Sun Yat-sen University Cancer Center from 2017 to 2019.The median follow-up time for the ESD group,the surgery group,and the d-CRT group was 42.0 mo(95%CI:35.0-60.2),45.0 mo(95%CI:34.0-61.75)and 32.5 mo(95%CI:28.3-40.0),respectively.After adjusting for background factors using IPTW,the highest 3-year overall survival(OS)rate and 3-year recurrence-free survival(RFS)rate were observed in the ESD group(3-year OS:99.7% and 94.7% and 79.1%;and 3-year RFS:98.3%,87.4% and 79.1%,in the ESD,surgical,and d-CRT groups,respectively).There was no difference of severe complications occurring between the three groups(P≥0.05).Multivariate analysis showed that treatment method,histology and depth of infiltration were independently associated with OS and RFS.CONCLUSION For cT1N0M0 EC,ESD had better long-term survival and lower hospitalization costs than those who underwent d-CRT and surgery,with a similar rate of severe complications occurring.展开更多
Photoelectrochemical(PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for m...Photoelectrochemical(PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for metal to achieve cathodic protection. Comparing with traditional PEC photoanode for water splitting, it requires the photoanode providing a suitable cathodic potential for the metal, instead of pursuit ultimate photon to electric conversion efficiency, thus it is a more possible PEC technology for engineering application. To date, great efforts have been devoted to developing novel n-type semiconductors and advanced modification method to improve the performance on PEC cathodic protection metals. Herein, recent progresses in this field are summarized. We highlight the fabrication process of PEC cathodic protection thin film, various nanostructure controlling, doping, compositing methods and their operation mechanism. Finally, the current challenges and future potential works on improving the PEC cathodic protection performance are discussed.展开更多
{[K.18-Crown-6]Br3}n,a unique tribromide-type catalyst,was utilized for the N-boc protection of amines and trimethylsilylation(TMS)and tetrahydropyranylation(THP)of alcohols.The method is general for the preparation o...{[K.18-Crown-6]Br3}n,a unique tribromide-type catalyst,was utilized for the N-boc protection of amines and trimethylsilylation(TMS)and tetrahydropyranylation(THP)of alcohols.The method is general for the preparation of N-boc derivatives of aliphatic(acyclic and cyclic)and aromatic,and primary and secondary amines and also various TMS-ethers and THP-ethers.The simple separation of the catalyst from the product is one of the many advantages of this method.展开更多
基金Supported by Health Science and Technology Project of Tianjin Health Commission,No.ZC20190Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-005ATianjin Medical University Clinical Research Fund,No.22ZYYLCCG04.
文摘BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen prognostic risk factors for T4N0M0 colon cancer and construct a prognostic nomogram model for these patients.METHODS Two hundred patients with T4N0M0 colon cancer were treated at Tianjin Medical University General Hospital between January 2017 and December 2021,of which 112 patients were assigned to the training cohort,and the remaining 88 patients were assigned to the validation cohort.Differences between the training and validation groups were analyzed.The training cohort was subjected to multi-variate analysis to select prognostic risk factors for T4N0M0 colon cancer,followed by the construction of a nomogram model.RESULTS The 3-year overall survival(OS)rates were 86.2%and 74.4%for the training and validation cohorts,respectively.Enterostomy(P=0.000),T stage(P=0.001),right hemicolon(P=0.025),irregular review(P=0.040),and carbohydrate antigen 199(CA199)(P=0.011)were independent risk factors of OS in patients with T4N0M0 colon cancer.A nomogram model with good concordance and accuracy was constructed.CONCLUSION Enterostomy,T stage,right hemicolon,irregular review,and CA199 were independent risk factors for OS in patients with T4N0M0 colon cancer.The nomogram model exhibited good agreement and accuracy.
基金Research Project of Hunan Province Education Department(No.14C0972)
文摘The reliability and availability of the reactor protection system (RPS) can be improved by using M out of N judg- ment system. By analyzing two quantitative indicators, the rate of refusal to operate and mal-operation rate, a strict math- ematical formula and an approximate calculation are stated. The differences of a series of judgment systems are discussed on condition that the unsafe failure probability and the security failure probability are both 0.1. Based on given parameters (A, B,P, Q): A is upper limit of the refusal rate for the RPS, B is upper limit of the real-operation rate, P and Q are basic protection unit rates corresponding to refusal rate and mal-operation rate, respectively. According to these parameters, the values of N and M can be solved.
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
基金supported by the National MCF Energy R&D Program of China(Nos.2022YFE03100000 and 2019YFE03030004)National Natural Science Foundation of China(No.11835010)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2021MA074)the National College Students’Innovation and Entrepreneurship Training Program(No.202211066017)。
文摘The CLT code was used to quantitatively study the impact of toroidal mode coupling on the explosive dynamics of the m/n=3/1 double tearing mode.The focus of this study was on explosive reconnection processes,in which the energy bursts and the main mode no longer dominates when the separation between two rational surfaces is relatively large in the medium range.The development of higher m and n modes is facilitated by a relatively large separation between two rational surfaces,a small q_(min)(the minimum value of the safety factor),or low resistivity.The relationships between the higher m and n mode development,explosive reconnection rate,and position exchange of 3/1 islands are summarized for the first time.Separation plays a more important role than q_(min)in enhancing the development of higher m and n modes.At a relatively large separation,the good development of higher m and n modes greatly reduces the reconnection rate and suppresses the development of the main mode,resulting in the main mode not being able to develop sufficiently large to generate the position changes of 3/1 islands.
基金supported in part by the National Natural Science Foundation of China(62373348)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01D05)+1 种基金the Tianshan Talent Training Program(2023TSYCLJ0021)the Pioneer Hundred Talents Program of Chinese Academy of Sciences.
文摘N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.
文摘The study carried out on the waters of the Méné River led to an overall assessment of its water quality during the dry season and the rainy season. The analysis focused on eight (8) water samples taken from the river during a period of dry season (January-February) and a period of rainy season (June and September). The various physicochemical parameters were measured according to Afnor standardized methods. The readings of temperature, turbidity, pH and conductivity made it possible to account for the disturbances occurring in water quality. A temporal variation correlated with the seasons (dry or rainy) is noted. Turbidity depends on the concentration of suspended solids (SS) in the water and drained particles and therefore on the seasons. Just like the temperature, the conductivity changes with the season. The waters of the Méné River are generally acidic. The results obtained show that there is a low level of pollution by chlorides, phosphates, nitrites and nitrates. A slight pollution of the waters of Méné in organic matter (chemical oxygen demand values are less than 25 mg∙L−1 during dry season and 32.33 ± 4.73 mg∙L−1 during rainy season) was observed. The concentrations of metallic trace elements such as iron, manganese and aluminum indicate significant pollution of these waters by these elements. Overall, the waters of the Méné River are of satisfactory quality because all the physicochemical parameters analyzed have values below standards during the dry season as well as during the rainy season with the exception of COD and a few metallic trace elements.
基金Supported by the Guangdong Esophageal Cancer Institute Science and Technology Program,No.M202013Guangdong Medical Research Foundation,No.A2021369.
文摘BACKGROUND Endoscopic submucosal dissection(ESD)and surgical resection are the standard of care for cT1N0M0 esophageal cancer(EC),whereas definitive chemoradiotherapy(d-CRT)is a treatment option.Nevertheless,the comparative efficiency and safety of ESD,surgery and d-CRT for cT1N0M0 EC remain unclear.AIM To compare the efficiency and safety of ESD,surgery and d-CRT for cT1N0M0 EC.METHODS We retrospectively analyzed the hospitalized data of a total of 472 consecutive patients with cT1N0M0 EC treated at Sun Yat-sen University Cancer center between 2017-2019 and followed up until October 30th,2022.We analyzed demographic,medical recorded,histopathologic characteristics,imaging and endoscopic,and follow-up data.The Kaplan-Meier method and Cox proportional hazards modeling were used to analyze the difference of survival outcome by treatments.Inverse probability of treatment weighting(IPTW)was used to minimize potential confounding factors.RESULTS We retrospectively analyzed patients who underwent ESD(n=99)or surgery(n=220)or d-CRT(n=16)at the Sun Yat-sen University Cancer Center from 2017 to 2019.The median follow-up time for the ESD group,the surgery group,and the d-CRT group was 42.0 mo(95%CI:35.0-60.2),45.0 mo(95%CI:34.0-61.75)and 32.5 mo(95%CI:28.3-40.0),respectively.After adjusting for background factors using IPTW,the highest 3-year overall survival(OS)rate and 3-year recurrence-free survival(RFS)rate were observed in the ESD group(3-year OS:99.7% and 94.7% and 79.1%;and 3-year RFS:98.3%,87.4% and 79.1%,in the ESD,surgical,and d-CRT groups,respectively).There was no difference of severe complications occurring between the three groups(P≥0.05).Multivariate analysis showed that treatment method,histology and depth of infiltration were independently associated with OS and RFS.CONCLUSION For cT1N0M0 EC,ESD had better long-term survival and lower hospitalization costs than those who underwent d-CRT and surgery,with a similar rate of severe complications occurring.
基金supported by National Natural Science Foundation of China(Grant no.41506093)
文摘Photoelectrochemical(PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for metal to achieve cathodic protection. Comparing with traditional PEC photoanode for water splitting, it requires the photoanode providing a suitable cathodic potential for the metal, instead of pursuit ultimate photon to electric conversion efficiency, thus it is a more possible PEC technology for engineering application. To date, great efforts have been devoted to developing novel n-type semiconductors and advanced modification method to improve the performance on PEC cathodic protection metals. Herein, recent progresses in this field are summarized. We highlight the fabrication process of PEC cathodic protection thin film, various nanostructure controlling, doping, compositing methods and their operation mechanism. Finally, the current challenges and future potential works on improving the PEC cathodic protection performance are discussed.
基金support for this work from the research affairs of Hamedan University of Medical Sciences,Hamedan,I.R.Iranpartial support of this work by the Research Affairs Office of Bu-Ali Sina UniversityCenter of Excellence in Development of Chemical Method(CEDCM)Hamedan,I.R.Iran
文摘{[K.18-Crown-6]Br3}n,a unique tribromide-type catalyst,was utilized for the N-boc protection of amines and trimethylsilylation(TMS)and tetrahydropyranylation(THP)of alcohols.The method is general for the preparation of N-boc derivatives of aliphatic(acyclic and cyclic)and aromatic,and primary and secondary amines and also various TMS-ethers and THP-ethers.The simple separation of the catalyst from the product is one of the many advantages of this method.