1 IntroductionFor an n×n matrix A which is an inverse M-matrix,M.Neumann in [1]conjecturedthat the Hadamard product A·A is an inverse of an M-matrix.They have checked hisconjecture without failure on Ultrame...1 IntroductionFor an n×n matrix A which is an inverse M-matrix,M.Neumann in [1]conjecturedthat the Hadamard product A·A is an inverse of an M-matrix.They have checked hisconjecture without failure on Ultrametric matrices and inverse of MMA-matrices,Uni-pathicmatrices and the Willongby inverse M-matrices.Bo-Ying Wang et al.in[2]haveinvestigated Triangular inverse M-matrices which are closed under the Hadamard multipli-cation.Lu Linzheng,Sun Weiwei and Li Wen in[3]presented a more general展开更多
In this paper, we present a useful result on the structures of circulant inverse Mmatrices. It is shown that if the n × n nonnegative circulant matrix A = Circ[c0, c1,… , c(n- 1)] is not a positive matrix and ...In this paper, we present a useful result on the structures of circulant inverse Mmatrices. It is shown that if the n × n nonnegative circulant matrix A = Circ[c0, c1,… , c(n- 1)] is not a positive matrix and not equal to c0I, then A is an inverse M-matrix if and only if there exists a positive integer k, which is a proper factor of n, such that cjk 〉 0 for j=0,1…, [n-k/k], the other ci are zero and Circ[co, ck,… , c(n-k)] is an inverse M-matrix. The result is then extended to the so-called generalized circulant inverse M-matrices.展开更多
A novel general stability analysis scheme based on a non-Lyapunov framework is explored. Several easy-to-check sufficient conditions for exponential p-stability are formulated in terms of M-matrices. Stability analysi...A novel general stability analysis scheme based on a non-Lyapunov framework is explored. Several easy-to-check sufficient conditions for exponential p-stability are formulated in terms of M-matrices. Stability analysis of applied second-order It? equations with delay is provided as well. The linearization technique, in combination with the tests obtained in this paper, can be used for local stability analysis of a wide class of nonlinear stochastic differential equations.展开更多
One of the fundamental problems in pinning control of complex networks is selecting appropriate pinning nodes, such that the whole system is controlled. This is particularly useful for complex networks with huge numbe...One of the fundamental problems in pinning control of complex networks is selecting appropriate pinning nodes, such that the whole system is controlled. This is particularly useful for complex networks with huge numbers of nodes. Recent research has yielded several pinning node selection strategies, which may be efficient. However, selecting a set of pinning nodes and identifying the nodes that should be selected first remain challenging problems. In this paper, we present a network control strategy based on left Perron vector. For directed networks where nodes have the same in-and out-degrees, there has so far been no effective pinning node selection strategy, but our method can find suitable nodes. Likewise, our method also performs well for undirected networks where the nodes have the same degree. In addition, we can derive the minimum set of pinning nodes and the order in which they should be selected for given coupling strengths. Our proofs of these results depend on the properties of non-negative matrices and M-matrices. Several examples show that this strategy can effectively select appropriate pinning nodes, and that it can achieve better results for both directed and undirected networks.展开更多
文摘1 IntroductionFor an n×n matrix A which is an inverse M-matrix,M.Neumann in [1]conjecturedthat the Hadamard product A·A is an inverse of an M-matrix.They have checked hisconjecture without failure on Ultrametric matrices and inverse of MMA-matrices,Uni-pathicmatrices and the Willongby inverse M-matrices.Bo-Ying Wang et al.in[2]haveinvestigated Triangular inverse M-matrices which are closed under the Hadamard multipli-cation.Lu Linzheng,Sun Weiwei and Li Wen in[3]presented a more general
基金This work is supported by National Natural Science Foundation of China (No. 10531080).
文摘In this paper, we present a useful result on the structures of circulant inverse Mmatrices. It is shown that if the n × n nonnegative circulant matrix A = Circ[c0, c1,… , c(n- 1)] is not a positive matrix and not equal to c0I, then A is an inverse M-matrix if and only if there exists a positive integer k, which is a proper factor of n, such that cjk 〉 0 for j=0,1…, [n-k/k], the other ci are zero and Circ[co, ck,… , c(n-k)] is an inverse M-matrix. The result is then extended to the so-called generalized circulant inverse M-matrices.
文摘A novel general stability analysis scheme based on a non-Lyapunov framework is explored. Several easy-to-check sufficient conditions for exponential p-stability are formulated in terms of M-matrices. Stability analysis of applied second-order It? equations with delay is provided as well. The linearization technique, in combination with the tests obtained in this paper, can be used for local stability analysis of a wide class of nonlinear stochastic differential equations.
基金supported by the National Natural Science Foundation of China(Grant Nos.61573096,61374011,61833005)the China Postdoctoral Science Foundation(Grant No.2014M561557)+1 种基金the Shandong Province University Scientific Research Project of China(Grant No.J15LI12)the Postdoctoral Science Foundation of Jiangsu Province of China(Grant No.1402040B)
文摘One of the fundamental problems in pinning control of complex networks is selecting appropriate pinning nodes, such that the whole system is controlled. This is particularly useful for complex networks with huge numbers of nodes. Recent research has yielded several pinning node selection strategies, which may be efficient. However, selecting a set of pinning nodes and identifying the nodes that should be selected first remain challenging problems. In this paper, we present a network control strategy based on left Perron vector. For directed networks where nodes have the same in-and out-degrees, there has so far been no effective pinning node selection strategy, but our method can find suitable nodes. Likewise, our method also performs well for undirected networks where the nodes have the same degree. In addition, we can derive the minimum set of pinning nodes and the order in which they should be selected for given coupling strengths. Our proofs of these results depend on the properties of non-negative matrices and M-matrices. Several examples show that this strategy can effectively select appropriate pinning nodes, and that it can achieve better results for both directed and undirected networks.