Objective The effect of the functionally unknown gene C6orf120 on autoimmune hepatitis was investigated on C6orf120 knockout rats(C6orf120^(-/-))and THP-1 cells.Method Six–eight-week-old C6orf120^(-/-)and wild-type(W...Objective The effect of the functionally unknown gene C6orf120 on autoimmune hepatitis was investigated on C6orf120 knockout rats(C6orf120^(-/-))and THP-1 cells.Method Six–eight-week-old C6orf120^(-/-)and wild-type(WT)SD rats were injected with Con A(16 mg/kg),and euthanized after 24 h.The sera,livers,and spleens were collected.THP-1 cells and the recombinant protein(rC6ORF120)were used to explore the mechanism in vitro.The frequency of M1 and M2 macrophages was analyzed using flow cytometry.Western blotting and PCR were used to detect macrophage polarization-associated factors.Results C6orf120 knockout attenuated Con A-induced autoimmune hepatitis.Flow cytometry indicated that the proportion of CD68^(+)CD86^(+)M1 macrophages from the liver and spleen in the C6orf120^(-/-)rats decreased.C6orf120 knockout induced downregulation of CD86 protein and the mRNA levels of related inflammatory factors TNF-α,IL-1β,and IL-6 in the liver.C6orf120 knockout did not affect the polarization of THP-1 cells.However,rC6ORF120 promoted the THP-1 cells toward CD68^(+)CD80^(+)M1 macrophages and inhibited the CD68^(+)CD206^(+)M2 phenotype.Conclusion C6orf120 knockout alleviates Con A-induced autoimmune hepatitis by inhibiting macrophage polarization toward M1 macrophages and reducing the expression of related inflammatory factors in C6orf120^(-/-)rats.展开更多
Objective:To explore the balance of peripheral blood T helper 17 cells/regulatory T cell(Th17/Treg)ratio and the polarization ratio of M1 and M2 macrophages in lower extremity arteriosclerosis obliterans(ASO).Methods:...Objective:To explore the balance of peripheral blood T helper 17 cells/regulatory T cell(Th17/Treg)ratio and the polarization ratio of M1 and M2 macrophages in lower extremity arteriosclerosis obliterans(ASO).Methods:A rat model of lower extremity ASO was established,and blood samples from patients with lower extremity ASO before and after surgery were obtained.ELISA was used to detect interleukin 6(IL-6),IL-10,and IL-17.Real-time RCR and Western blot analyses were used to detect Foxp3,IL-6,IL-10,and IL-17 expression.Moreover,flow cytometry was applied to detect the Th17/Treg ratio and M1/M2 ratio.Results:Compared with the control group,the iliac artery wall of ASO rats showed significant hyperplasia,and the concentrations of cholesterol and triglyceride were significantly increased(P<0.01),indicating the successful establishment of ASO.Moreover,the levels of IL-6 and IL-17 in ASO rats were pronouncedly increased(P<0.05),while the IL-10 level was significantly decreased(P<0.05).In addition to increased IL-6 and IL-17 levels,the mRNA and protein levels of Foxp3 and IL-10 in ASO rats were significantly decreased compared with the control group.The Th17/Treg and M1/M2 ratios in the ASO group were markedly increased(P<0.05).These alternations were also observed in ASO patients.After endovascular surgery(such as percutaneous transluminal angioplasty and arterial stenting),all these changes were significantly improved(P<0.05).Conclusions:The Th17/Treg and M1/M2 ratios were significantly increased in ASO,and surgery can effectively improve the balance of Th17/Treg,and reduce the ratio of M1/M2,and the expression of inflammatory factors.展开更多
The activation of M1 macrophages can be achieved by stimulating them with lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, M1 can be found under physiological conditions without any pathological stimu...The activation of M1 macrophages can be achieved by stimulating them with lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, M1 can be found under physiological conditions without any pathological stimuli. This study aimed to understand the involvement of RANKL-induced M1 macrophages in bone formation compared with pathologically induced macrophages. Fischer rats were used to investigate macrophage distribution in normal and injured femoral condyles in vivo. Bone marrow-derived macrophages (BMDMs) were activated with LPS+IFN-γ and RANKL to achieve M1 activation in vitro. Gene expression related to inflammation, osteoclastogenesis, angiogenesis, and migration was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and fluorescence-activated cell sorting (FACS). Tissue macrophages showed distinct expression patterns at different bone regions. RANKL was found in close proximity to inducible nitric oxide synthase-positive (iNOS+) cells in vivo, suggesting an association between RANKL expression and iNOS+ cells, especially in trabecular bone. RANKL-induced macrophages showed a different cytokine secretion profile compared with pathologically induced macrophages. Both osteoclasts and M1 macrophages peaked on day 7 during bone healing. RANKL could trigger Ml-like macrophages with properties that were different from those of LPS+IFN-γ-induced macrophages. These RANKL-activated M1 macrophages were actively involved in bone formation.展开更多
BACKGROUND M1 polarization of macrophages is an important pathological process in myocardial ischemia reperfusion injury, which is the major obstacle for the treatment of acute myocardial infarction. Currently, the st...BACKGROUND M1 polarization of macrophages is an important pathological process in myocardial ischemia reperfusion injury, which is the major obstacle for the treatment of acute myocardial infarction. Currently, the strategies and mechanisms of inhibiting M1 polarization are poorly explored. This study aims to investigate the role of soluble death receptor 5-Fc(s DR5-Fc) in regulating M1 polarization of macrophages under extreme conditions and explore the mechanisms from the aspect of glycolysis.METHODS Extreme conditions were induced in RAW264.7 cells. Real-time quantitative polymerase chain reaction and western blot were used to detect the expression of m RNA and proteins, respectively. Cell counting kit-8 was used to investigate the proliferation activity of cells. Expression levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay.RESULTS We found that s DR5-Fc rescues the proliferation of macrophages under extreme conditions, including nutrition deficiency, excessive peroxide, and ultraviolet irradiation. In addition, administration of s DR5-Fc inhibits the M1 polarization of macrophages induced by lipopolysaccharide(LPS) and interferon-gamma(IFN-γ), as the expression of M1 polarization markers CD86, CXC motif chemokine ligand 10, matrix metalloproteinase 9, and tumor necrosis factor-α, as well as the secretion of inflammatory factors interleukin(IL)-1β and IL-6, were significantly decreased. By further investigation of the mechanisms, the results showed that s DR5-Fc can recover the LPS and IFN-γ induced p H reduction, lactic acid elevation, and increased expression of hexokinase 2 and glucose transporter 1, which were markers of glycolysis in macrophages.CONCLUSIONS s DR5-Fc inhibits the M1 polarization of macrophages by blocking the glycolysis, which provides a new direction for the development of strategies in the treatment of myocardial ischemia reperfusion injury.展开更多
Acute liver injury(ALI)has an elevated fatality rate due to untimely and ineffective treatment.Although,schisandrin B(SchB)has been extensively used to treat diverse liver diseases,its therapeutic efficacy on ALI was ...Acute liver injury(ALI)has an elevated fatality rate due to untimely and ineffective treatment.Although,schisandrin B(SchB)has been extensively used to treat diverse liver diseases,its therapeutic efficacy on ALI was limited due to its high hydrophobicity.Palmitic acid-modified serum albumin(PSA)is not only an effective carrier for hydrophobic drugs,but also has a superb targeting effect via scavenger receptor-A(SR-A)on the M1 macrophages,which are potential therapeutic targets for ALI.Compared with the common macrophage-targeted delivery systems,PSA enables site-specific drug delivery to reduce off-target toxicity.Herein,we prepared SchB-PSA nanoparticles and further assessed their therapeutic effect on ALI.In vitro,compared with human serum albumin encapsulated SchB nanoparticles(SchB-HSA NPs),the SchB-PSA NPs exhibited more potent cytotoxicity on lipopolysaccharide(LPS)stimulated Raw264.7(LAR)cells,and LAR cells took up PSA NPs 8.79 times more than HSA NPs.As expected,the PSA NPs also accumulated more in the liver.Moreover,SchB-PSA NPs dramatically reduced the activation of NF-κB signaling,and significantly relieved inflammatory response and hepatic necrosis.Notably,the high dose of SchB-PSA NPs improved the survival rate in 72 h of ALI mice to 75%.Hence,SchB-PSA NPs are promising to treat ALI.展开更多
Background:Myocardial infarctions(MI)is a major threat to human health especially in people exposed to cold environment.The polarization of macrophages towards different functional phenotypes(M1 macrophages and M2 mac...Background:Myocardial infarctions(MI)is a major threat to human health especially in people exposed to cold environment.The polarization of macrophages towards different functional phenotypes(M1 macrophages and M2 macrophages)is closely related to MI repairment.The growth differentiation factor 11(GDF11)has been reported to play a momentous role in inflammatory associated diseases.In this study,we examined the regulatory role of GDF11 in macrophage polarization and elucidated the underlying mechanisms in MI.Methods:In vivo,the mice model of MI was induced by permanent ligation of the left anterior descending coronary artery(LAD),and mice were randomly divided into the sham group,MI group,and MI+GDF11 group.The protective effect of GDF11 on myocardial infarction and its effect on macrophage polarization were verified by echocardiography,triphenyl tetrazolium chloride staining and immunofluorescence staining of heart tissue.In vitro,based on the RAW264.7 cell line,the effect of GDF11 in promoting macrophage polarization toward the M2 type by inhibiting the Notch1 Signaling pathway was validated by qRT-PCR,Western blot,and flow cytometry.Results:We found that GDF11 was significantly downregulated in the cardiac tissue of MI mice.And GDF11 supplementation can improve the cardiac function.Moreover,GDF11 could reduce the proportion of M1 macrophages and increase the accumulation of M2 macrophages in the heart tissue of MI mice.Furthermore,the cardioprotective effect of GDF11 on MI mice was weakened after macrophage clearance.At the cellular level,application of GDF11 could inhibit the expression of M1 macrophage(classically activated macrophage)markers iNOS,interleukin(IL)-1β,and IL-6 in a dose-dependent manner.In contrast,GDF11 significantly increased the level of M2 macrophage markers including IL-10,CD206,arginase 1(Arg1),and vascular endothelial growth factor(VEGF).Interestingly,GDF11 could promote M1 macrophages polarizing to M2 macrophages.At the molecular level,GDF11 significantly down-regulated the Notch1 signaling pathway,the activation of which has been demonstrated to promote M1 polarization in macrophages.Conclusions:GDF11 promoted macrophage polarization towards M2 to attenuate myocardial infarction via inhibiting Notch1 signaling pathway.展开更多
Objective: To observe the effect of acumoxi (acupuncture and moxibustion) on macrophage (Mφ)-lL1-Th net-work and hydroperitoneum hepatoma (H 22) metastasis in mice. Methods: A total of 36 BALB/ c male mice bearing H ...Objective: To observe the effect of acumoxi (acupuncture and moxibustion) on macrophage (Mφ)-lL1-Th net-work and hydroperitoneum hepatoma (H 22) metastasis in mice. Methods: A total of 36 BALB/ c male mice bearing H 22 are randomly divided into control, acupuncture and acumoxi groups with 12 cases in each group. In the later 2 groups, Dazhui (GV 14) and Guanyuan (CV 4) are punctured once daily, continuously for 18 days, and in acumoxi group, the two acupoints were also moxibustioned alternatively with moxa stick once every day. After killing the mice, the tissue samples of the 3 groups are treated routinely step by step and analyzed by means of colorimetric analysis for determining the phagocytic function of the macrophages; and the content of IL1 of the Mφ supernatant is assayed with serum plate agglutination (SPA)-Ig floral hoop method of T helper cell (Th) monoclonal antibody; the weight of the reniportal lymph node, the kidney and the lung, and the number of the cancerous nodes on the pulmonary surface are calculated. Results: After acupuncture and moxibustion treatment, the immunoregulatory network indices of acumoxi group increase obviously compared with those of control group(P<0.01), showing an anti-metastasis effect of acumoxi on H 22. Conclusion: Results of the present study and those of our former research prove that acupuncture and moxibustion can suppress the tumor growth and H 22 metastasis by the enhancement of the immunoregulatory network.展开更多
There is an annual increase of influenza-related SARI cases in winter months. Despite the high relevance of this problem, influenza pathogenesis and the role of surfactant system and its SP-A (surfactant protein A) en...There is an annual increase of influenza-related SARI cases in winter months. Despite the high relevance of this problem, influenza pathogenesis and the role of surfactant system and its SP-A (surfactant protein A) enzyme in antiviral defense remain poorly understood. SP-A activates macrophage M1 polarization and triggers an antiviral response due to the activation of T-cells and dendritic cells. Therefore, surfactant system is an important element of infection protection and a promising therapeutic target.展开更多
More effective approaches are needed in the treatment of blood cancers,in particular acute myeloid leukemia(AML),that are able to eliminate resistant leukemia stem cells(LSCs)at the bone marrow(BM),after a chemotherap...More effective approaches are needed in the treatment of blood cancers,in particular acute myeloid leukemia(AML),that are able to eliminate resistant leukemia stem cells(LSCs)at the bone marrow(BM),after a chemotherapy session,and then enhance hematopoietic stem cell(HSC)engraftment for the re-establishment of the HSC compartment.Here,we investigate whether light-activatable nanoparticles(NPs)encapsulating all-trans-retinoic acid(RA^(+)NPs)could solve both problems.Our in vitro results show that mouse AML cells transfected with RA^(+)NPs differentiate towards antitumoral M1 macrophages through RIG.1 and OASL gene expression.Our in vivo results further show that mouse AML cells transfected with RA^(+)NPs home at the BM after transplantation in an AML mouse model.The photo-disassembly of the NPs within the grafted cells by a blue laser enables their differentiation towards a macrophage lineage.This macrophage activation seems to have systemic anti-leukemic effect within the BM,with a significant reduction of leukemic cells in all BM compartments,of animals treated with RA^(+)NPs,when compared with animals treated with empty NPs.In a separate group of experiments,we show for the first time that normal HSCs transfected with RA^(+)NPs show superior engraftment at the BM niche than cells without treatment or treated with empty NPs.This is the first time that the activity of RA is tested in terms of long-term hematopoietic reconstitution after transplant using an in situ activation approach without any exogenous priming or genetic conditioning of the transplanted cells.Overall,the approach documented here has the potential to improve consolidation therapy in AML since it allows a dual intervention in the BM niche:to tackle resistant leukemia and improve HSC engraftment at the same time.展开更多
Liver fibrosis is characterized by chronic inflammatory responses and progressive fibrous scar formation.Macrophages play a central role in the pathogenesis of hepatic fibrosis by reconstructing the immune microenviro...Liver fibrosis is characterized by chronic inflammatory responses and progressive fibrous scar formation.Macrophages play a central role in the pathogenesis of hepatic fibrosis by reconstructing the immune microenvironment.Picroside Ⅱ(PIC Ⅱ),extracted from Picrorhizae Rhizoma,has demonstrated therapeutic potential for various liver damage.However,the mechanisms by which macrophage polarization initiates immune cascades and contributes to the development of liver fibrosis,and whether this process can be influenced by PIC Ⅱ,remain unclear.In the current study,RNA sequencing and multiple molecular approaches were utilized to explore the underlying mechanisms of PIC Ⅱ against liver fibrosis in multidrug-resistance protein 2 knockout(Mdr2^(−/−))mice.Our findings indicate that PIC Ⅱ activates M1-polarized macrophages to recruit natural killer cells(NK cells),potentially via the CXCL16-CXCR6 axis.Additionally,PIC Ⅱ promotes the apoptosis of activated hepatic stellate cells(aHSCs)and enhances the cytotoxic effects of NK cells,while also reducing the formation of neutrophil extracellular traps(NETs).Notably,the anti-hepatic fibrosis effects associated with PIC Ⅱ were largely reversed by macrophage depletion in Mdr2^(−/−)mice.Collectively,our research suggests that PIC Ⅱ is a potential candidate for halting the progression of liver fibrosis.展开更多
Wound healing in diabetic ulcers remains a significant clinical challenge,primarily due to bacterial infection and impaired angiogenesis.Periplaneta americana extract(PAE)has been widely used to treat diabetic wounds,...Wound healing in diabetic ulcers remains a significant clinical challenge,primarily due to bacterial infection and impaired angiogenesis.Periplaneta americana extract(PAE)has been widely used to treat diabetic wounds,yet its underlying mechanisms are not fully understood.This study aimed to elucidate these mechanisms by analyzing long non-coding RNA(lncRNA)expressions in the wound tissues from diabetic anal fistula patients treated with or without PAE,using high-throughput sequencing.Peripheral blood monocytes from patients were differentiated into M0 macrophages with human macrophage colony-stimulating factor(hMCSF)and subsequently polarized into M1 macrophages with lipopolysaccharide.The results indicated that LINC01133 and SLAMF9 were downregulated in wound tissues of patients treated with PAE.Furthermore,PAE suppressed M1 macrophage polarization and enhanced human umbilical vein endothelial cell(HUVEC)proliferation,migration,and angiogenesis.These effects were diminished when LINC01133 or SLAMF9 were overexpressed.Mechanistically,LINC01133 was shown to upregulate SLAMF9 through interaction with ELAVL1.Overexpression of SLAMF9 reversed the effects of LINC01133 silencing on macrophage polarization and HUVEC functions.In conclusion,PAE facilitates the healing of infected diabetic ulcers by downregulating the LINC01133/SLAMF9 pathway.展开更多
Background:Acute skin wounds may compromise the skin barrier,posing a risk of infection.Small intestinal submucosa(SIS)is widely used to treat acute and chronic wounds.However,the efficacy of SIS to accelerate wound h...Background:Acute skin wounds may compromise the skin barrier,posing a risk of infection.Small intestinal submucosa(SIS)is widely used to treat acute and chronic wounds.However,the efficacy of SIS to accelerate wound healing still needs to be improved to meet clinical demands.To tackle this problem,platelet-rich plasma(PRP)is used due to its potency to promote proliferation,migration and adhesion of target cells.In this study,we applied PRP and SIS to skin wounds to explore their effects on wound healing by evaluating re-epithelialization,collagen production,angiogenesis and the inflammatory response.Methods:A1×1-cm full-thickness skin defectwas established in mice.Sixty mice were divided into four treatment groups:PRP+SIS,PRP,SIS and control.On days 3,5,7,10 and 14 post-surgery,tissue specimens were harvested.Haematoxylin and eosin,Masson’s trichrome,immunohistochemical and immunofluorescence double staining were used to visualize epidermal thickness,collagen and vascular regeneration and inflammation.Results:Wound contraction in the PRP and PRP+SIS groups was significantly greater,compared with the other groups,on days 3 and 5 post-surgery.A histological analysis showed higher collagen expression in the PRP and PRP+SIS groups on day 7,whichwas associated with a thicker epidermal layer on day 14.In addition,immunohistochemical staining showed that CD31-positive blood vessels and vascular endothelial growth factor expression in the PRP+SIS and PRP groups were significantly higher,compared with the control group.Furthermore,immunofluorescence double staining showed that the number of M1 and M2 macrophages in the PRP+SIS and PRP groups was higher,compared with the control and SIS groups alone,on day 3.However,on day 7,the number of M1 macrophages dramatically decreased in the PRP+SIS and PRP groups.The ratio of M2 to M1 macrophages in the PRP+SIS and PRP groups was 3.97 and 2.93 times that of the control group and 4.56 and 3.37 times that of the SIS group,respectively.Conclusion:Co-administration of SIS and PRP has a better effect on promoting angiogenesis,reepithelialization and collagen regeneration in managing acute wound healing than either agent alone.展开更多
Rheumatoid arthritis(RA)is a chronic inflammatory disease that eventually leads to disability.Inflammatory cell infiltration,severe joint breaking and systemic bone loss are the main clinical symptoms.In this study,we...Rheumatoid arthritis(RA)is a chronic inflammatory disease that eventually leads to disability.Inflammatory cell infiltration,severe joint breaking and systemic bone loss are the main clinical symptoms.In this study,we established a collagen-induced arthritis(CIA)model and found a large number of M1 macrophages and pyroptosis,which are important sources of proinflammatory cytokines.Punicalagin(PUN)is an active substance extracted from pomegranate peel.We found that it inhibited joint inflammation,cartilage damage and systemic bone destruction in CIA mice.PUN effectively alleviated the high expression of inflammatory cytokines in synovial tissue in vivo.PUN treatment shifted macrophages from the M1 phenotype to the M2 phenotype after stimulation with lipopolysaccharide(LPS)and interferon(IFN)-γ.The expression of inducible nitric oxide synthase(i NOS)and other proinflammatory cytokines released by M1 macrophages was decreased in the PUN treatment group.However,simultaneously,the expression of markers of anti-inflammatory M2 macrophages,such as arginase(Arg)-1 and interleukin(IL)-10,was increased.In addition,PUN treatment attenuated pyroptosis by downregulating the expression of NLRP3 and caspase-1,thereby preventing inflammatory cell death resulting from the release of IL-1βand IL-18.Mechanistically,PUN inhibited the activation of receptor activators of the nuclear factor-κB(NF-κB)signaling pathway,which contributes to M1 polarization and pyroptosis of macrophages.We concluded that PUN ameliorated pathological inflammation by inhibiting M1 phenotype polarization and pyroptosis and has great potential as a therapeutic treatment for human RA.展开更多
Osteoarthritis(OA),in which M1 macrophage polarization in the synovium exacerbates disease progression,is a major cause of cartilage degeneration and functional disabilities.Therapeutic strategies of OA designed to in...Osteoarthritis(OA),in which M1 macrophage polarization in the synovium exacerbates disease progression,is a major cause of cartilage degeneration and functional disabilities.Therapeutic strategies of OA designed to interfere with the polarization of macrophages have rarely been reported.Here,we report that SHP099,as an allosteric inhibitor of src-homology 2-containing protein tyrosine phosphatase 2(SHP2),attenuated osteoarthritis progression by inhibiting M1 macrophage polarization.We demonstrated that M1 macrophage polarization was accompanied by the overexpression of SHP2 in the synovial tissues of OA patients and OA model mice.Compared to wild-type(WT)mice,myeloid lineage conditional Shp2 knockout(c KO)mice showed decreased M1 macrophage polarization and attenuated severity of synovitis,an elevated expression of cartilage phenotype protein collagen II(COL2),and a decreased expression of cartilage degradation markers collagen X(COL10)and matrix metalloproteinase3(MMP3)in OA cartilage.Further mechanistic analysis showed that SHP099 inhibited lipopolysaccharide(LPS)-induced Toll-like receptor(TLR)signaling mediated by nuclear factor kappa B(NF-κB)and PI3K—AKT signaling.Moreover,intra-articular injection of SHP099 also significantly attenuated OA progression,including joint synovitis and cartilage damage.These results indicated that allosteric inhibition of SHP2 might be a promising therapeutic strategy for the treatment of OA.展开更多
Thylakoid(Tk)membranes are of unique superiority in photodynamic therapy(PDT)because they not only carry abundant chlorophylls containing photosensitizer porphyrin but also can produce O_(2).However,the current therap...Thylakoid(Tk)membranes are of unique superiority in photodynamic therapy(PDT)because they not only carry abundant chlorophylls containing photosensitizer porphyrin but also can produce O_(2).However,the current therapeutic performance of Tk is dramatically limited because of their poor tumor targeting and inefficient O_(2) production.Here,we report an immunomodulatory bio-nanovesicle of Tk membranes fused with M1 macrophage-derived extracellular vesicles(M1 EV)for efficient PDT of tumors.The hybrid nanovesicle Tk@M1 was prepared by squeezing the Tk membranes of spinach with M1 EV.The systemic study confirmed that Tk@M1 can not only actively accumulate in tumors but also effectively regulate the inactive immune microenvironment of tumors.Such activated"hot"tumors significantly enhance the PDT efficacy of Tk@M1 attributed to the increased O_(2) from catalase catalyzed decomposition of augmented H_(2)O_(2),providing a novel idea about constructing natural systems for effective tumor treatment.展开更多
Background and Aims:Osteopontin(OPN)is reported to be associated with the pathogenesis of nonalcoholic fatty liver disease(NAFLD).However,the function of OPN in NAFLD is still inconclusive.Therefore,our aim in this st...Background and Aims:Osteopontin(OPN)is reported to be associated with the pathogenesis of nonalcoholic fatty liver disease(NAFLD).However,the function of OPN in NAFLD is still inconclusive.Therefore,our aim in this study was to evaluate the role of OPN in NAFLD and clarify the involved mechanisms.Methods:We analyzed the expression change of OPN in NAFLD by bioinformatic analysis,qRT-PCR,western blotting and immunofluorescence staining.To clarify the role of OPN in NAFLD,the effect of OPN from HepG2 cells on macrophage polarization and the involved mechanisms were examined by FACS and western blotting.Results:OPN was significantly upregulated in NAFLD patients compared with normal volunteers by microarray data,and the high expression of OPN was related with disease stage and progression.OPN level was also significantly increased in liver tissue samples of NAFLD from human and mouse,and in HepG2 cells treated with oleic acid(OA).Furthermore,the supernatants of OPN-treated HepG2 cells promoted the macrophage M1 polarization.Mechanistically,OPN activated the janus kinase 1(JAK1)/signal transducers and activators of transcription 1(STAT1)signaling pathway in HepG2 cells,and consequently HepG2 cells secreted more high-mobility group box 1(HMGB1),thereby promoting macrophage M1 polarization.Conclusions:OPN promoted macrophage M1 polarization by increasing JAK1/STAT1-induced HMGB1 secretion in hepatocytes.展开更多
基金supported by the Dengfeng Talent Support Program of Beijing Municipal Administration of Hospitals[Grant No.DFL20221601]the Natural Science Foundation of Beijing[Grant No.7212053]Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine[Grant No.ZYYCXTD-C-202006].
文摘Objective The effect of the functionally unknown gene C6orf120 on autoimmune hepatitis was investigated on C6orf120 knockout rats(C6orf120^(-/-))and THP-1 cells.Method Six–eight-week-old C6orf120^(-/-)and wild-type(WT)SD rats were injected with Con A(16 mg/kg),and euthanized after 24 h.The sera,livers,and spleens were collected.THP-1 cells and the recombinant protein(rC6ORF120)were used to explore the mechanism in vitro.The frequency of M1 and M2 macrophages was analyzed using flow cytometry.Western blotting and PCR were used to detect macrophage polarization-associated factors.Results C6orf120 knockout attenuated Con A-induced autoimmune hepatitis.Flow cytometry indicated that the proportion of CD68^(+)CD86^(+)M1 macrophages from the liver and spleen in the C6orf120^(-/-)rats decreased.C6orf120 knockout induced downregulation of CD86 protein and the mRNA levels of related inflammatory factors TNF-α,IL-1β,and IL-6 in the liver.C6orf120 knockout did not affect the polarization of THP-1 cells.However,rC6ORF120 promoted the THP-1 cells toward CD68^(+)CD80^(+)M1 macrophages and inhibited the CD68^(+)CD206^(+)M2 phenotype.Conclusion C6orf120 knockout alleviates Con A-induced autoimmune hepatitis by inhibiting macrophage polarization toward M1 macrophages and reducing the expression of related inflammatory factors in C6orf120^(-/-)rats.
基金supported by Natural Science Foundation of Hainan Province(820MS135)Hainan Provincial Health Commission 2023 Provincial Key Clinical Discipline(Clinical Medical Center)Construction Unit Fund Project(Qiongwei Yihan[2022]No.341)Hainan Provincial Health Technology Innovation Joint Project(WSJK2024MS209).
文摘Objective:To explore the balance of peripheral blood T helper 17 cells/regulatory T cell(Th17/Treg)ratio and the polarization ratio of M1 and M2 macrophages in lower extremity arteriosclerosis obliterans(ASO).Methods:A rat model of lower extremity ASO was established,and blood samples from patients with lower extremity ASO before and after surgery were obtained.ELISA was used to detect interleukin 6(IL-6),IL-10,and IL-17.Real-time RCR and Western blot analyses were used to detect Foxp3,IL-6,IL-10,and IL-17 expression.Moreover,flow cytometry was applied to detect the Th17/Treg ratio and M1/M2 ratio.Results:Compared with the control group,the iliac artery wall of ASO rats showed significant hyperplasia,and the concentrations of cholesterol and triglyceride were significantly increased(P<0.01),indicating the successful establishment of ASO.Moreover,the levels of IL-6 and IL-17 in ASO rats were pronouncedly increased(P<0.05),while the IL-10 level was significantly decreased(P<0.05).In addition to increased IL-6 and IL-17 levels,the mRNA and protein levels of Foxp3 and IL-10 in ASO rats were significantly decreased compared with the control group.The Th17/Treg and M1/M2 ratios in the ASO group were markedly increased(P<0.05).These alternations were also observed in ASO patients.After endovascular surgery(such as percutaneous transluminal angioplasty and arterial stenting),all these changes were significantly improved(P<0.05).Conclusions:The Th17/Treg and M1/M2 ratios were significantly increased in ASO,and surgery can effectively improve the balance of Th17/Treg,and reduce the ratio of M1/M2,and the expression of inflammatory factors.
基金supported by the CSC (China Scholarship Council)-QUT (Queensland University of Technology) PhD Scholarship awarded to Ms Rong Huangthe Institute of Health and Biomedical Innovation Early Career Researcher Scheme Funding awarded to Dr Yinghong Zhou
文摘The activation of M1 macrophages can be achieved by stimulating them with lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, M1 can be found under physiological conditions without any pathological stimuli. This study aimed to understand the involvement of RANKL-induced M1 macrophages in bone formation compared with pathologically induced macrophages. Fischer rats were used to investigate macrophage distribution in normal and injured femoral condyles in vivo. Bone marrow-derived macrophages (BMDMs) were activated with LPS+IFN-γ and RANKL to achieve M1 activation in vitro. Gene expression related to inflammation, osteoclastogenesis, angiogenesis, and migration was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and fluorescence-activated cell sorting (FACS). Tissue macrophages showed distinct expression patterns at different bone regions. RANKL was found in close proximity to inducible nitric oxide synthase-positive (iNOS+) cells in vivo, suggesting an association between RANKL expression and iNOS+ cells, especially in trabecular bone. RANKL-induced macrophages showed a different cytokine secretion profile compared with pathologically induced macrophages. Both osteoclasts and M1 macrophages peaked on day 7 during bone healing. RANKL could trigger Ml-like macrophages with properties that were different from those of LPS+IFN-γ-induced macrophages. These RANKL-activated M1 macrophages were actively involved in bone formation.
基金supported by the National Natural Science Foundation of Beijing, China (No.7212027 & No.7214223)National Key Research and Development Program of China (2017YFC0908800)the Beijing Municipal Health Commission (PXM2020_026272_000002 & PXM2020_026272_000014)。
文摘BACKGROUND M1 polarization of macrophages is an important pathological process in myocardial ischemia reperfusion injury, which is the major obstacle for the treatment of acute myocardial infarction. Currently, the strategies and mechanisms of inhibiting M1 polarization are poorly explored. This study aims to investigate the role of soluble death receptor 5-Fc(s DR5-Fc) in regulating M1 polarization of macrophages under extreme conditions and explore the mechanisms from the aspect of glycolysis.METHODS Extreme conditions were induced in RAW264.7 cells. Real-time quantitative polymerase chain reaction and western blot were used to detect the expression of m RNA and proteins, respectively. Cell counting kit-8 was used to investigate the proliferation activity of cells. Expression levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay.RESULTS We found that s DR5-Fc rescues the proliferation of macrophages under extreme conditions, including nutrition deficiency, excessive peroxide, and ultraviolet irradiation. In addition, administration of s DR5-Fc inhibits the M1 polarization of macrophages induced by lipopolysaccharide(LPS) and interferon-gamma(IFN-γ), as the expression of M1 polarization markers CD86, CXC motif chemokine ligand 10, matrix metalloproteinase 9, and tumor necrosis factor-α, as well as the secretion of inflammatory factors interleukin(IL)-1β and IL-6, were significantly decreased. By further investigation of the mechanisms, the results showed that s DR5-Fc can recover the LPS and IFN-γ induced p H reduction, lactic acid elevation, and increased expression of hexokinase 2 and glucose transporter 1, which were markers of glycolysis in macrophages.CONCLUSIONS s DR5-Fc inhibits the M1 polarization of macrophages by blocking the glycolysis, which provides a new direction for the development of strategies in the treatment of myocardial ischemia reperfusion injury.
基金This project is financially supported by grants from the National Natural Science Foundation of China(82173758 and 81872804)Sichuan major science and technology project on biotechnology and medicine(2018SZDZX0018).
文摘Acute liver injury(ALI)has an elevated fatality rate due to untimely and ineffective treatment.Although,schisandrin B(SchB)has been extensively used to treat diverse liver diseases,its therapeutic efficacy on ALI was limited due to its high hydrophobicity.Palmitic acid-modified serum albumin(PSA)is not only an effective carrier for hydrophobic drugs,but also has a superb targeting effect via scavenger receptor-A(SR-A)on the M1 macrophages,which are potential therapeutic targets for ALI.Compared with the common macrophage-targeted delivery systems,PSA enables site-specific drug delivery to reduce off-target toxicity.Herein,we prepared SchB-PSA nanoparticles and further assessed their therapeutic effect on ALI.In vitro,compared with human serum albumin encapsulated SchB nanoparticles(SchB-HSA NPs),the SchB-PSA NPs exhibited more potent cytotoxicity on lipopolysaccharide(LPS)stimulated Raw264.7(LAR)cells,and LAR cells took up PSA NPs 8.79 times more than HSA NPs.As expected,the PSA NPs also accumulated more in the liver.Moreover,SchB-PSA NPs dramatically reduced the activation of NF-κB signaling,and significantly relieved inflammatory response and hepatic necrosis.Notably,the high dose of SchB-PSA NPs improved the survival rate in 72 h of ALI mice to 75%.Hence,SchB-PSA NPs are promising to treat ALI.
基金This work was supported by the National Natural Science Foundation of China(81970320 and 82003749).
文摘Background:Myocardial infarctions(MI)is a major threat to human health especially in people exposed to cold environment.The polarization of macrophages towards different functional phenotypes(M1 macrophages and M2 macrophages)is closely related to MI repairment.The growth differentiation factor 11(GDF11)has been reported to play a momentous role in inflammatory associated diseases.In this study,we examined the regulatory role of GDF11 in macrophage polarization and elucidated the underlying mechanisms in MI.Methods:In vivo,the mice model of MI was induced by permanent ligation of the left anterior descending coronary artery(LAD),and mice were randomly divided into the sham group,MI group,and MI+GDF11 group.The protective effect of GDF11 on myocardial infarction and its effect on macrophage polarization were verified by echocardiography,triphenyl tetrazolium chloride staining and immunofluorescence staining of heart tissue.In vitro,based on the RAW264.7 cell line,the effect of GDF11 in promoting macrophage polarization toward the M2 type by inhibiting the Notch1 Signaling pathway was validated by qRT-PCR,Western blot,and flow cytometry.Results:We found that GDF11 was significantly downregulated in the cardiac tissue of MI mice.And GDF11 supplementation can improve the cardiac function.Moreover,GDF11 could reduce the proportion of M1 macrophages and increase the accumulation of M2 macrophages in the heart tissue of MI mice.Furthermore,the cardioprotective effect of GDF11 on MI mice was weakened after macrophage clearance.At the cellular level,application of GDF11 could inhibit the expression of M1 macrophage(classically activated macrophage)markers iNOS,interleukin(IL)-1β,and IL-6 in a dose-dependent manner.In contrast,GDF11 significantly increased the level of M2 macrophage markers including IL-10,CD206,arginase 1(Arg1),and vascular endothelial growth factor(VEGF).Interestingly,GDF11 could promote M1 macrophages polarizing to M2 macrophages.At the molecular level,GDF11 significantly down-regulated the Notch1 signaling pathway,the activation of which has been demonstrated to promote M1 polarization in macrophages.Conclusions:GDF11 promoted macrophage polarization towards M2 to attenuate myocardial infarction via inhibiting Notch1 signaling pathway.
文摘Objective: To observe the effect of acumoxi (acupuncture and moxibustion) on macrophage (Mφ)-lL1-Th net-work and hydroperitoneum hepatoma (H 22) metastasis in mice. Methods: A total of 36 BALB/ c male mice bearing H 22 are randomly divided into control, acupuncture and acumoxi groups with 12 cases in each group. In the later 2 groups, Dazhui (GV 14) and Guanyuan (CV 4) are punctured once daily, continuously for 18 days, and in acumoxi group, the two acupoints were also moxibustioned alternatively with moxa stick once every day. After killing the mice, the tissue samples of the 3 groups are treated routinely step by step and analyzed by means of colorimetric analysis for determining the phagocytic function of the macrophages; and the content of IL1 of the Mφ supernatant is assayed with serum plate agglutination (SPA)-Ig floral hoop method of T helper cell (Th) monoclonal antibody; the weight of the reniportal lymph node, the kidney and the lung, and the number of the cancerous nodes on the pulmonary surface are calculated. Results: After acupuncture and moxibustion treatment, the immunoregulatory network indices of acumoxi group increase obviously compared with those of control group(P<0.01), showing an anti-metastasis effect of acumoxi on H 22. Conclusion: Results of the present study and those of our former research prove that acupuncture and moxibustion can suppress the tumor growth and H 22 metastasis by the enhancement of the immunoregulatory network.
文摘There is an annual increase of influenza-related SARI cases in winter months. Despite the high relevance of this problem, influenza pathogenesis and the role of surfactant system and its SP-A (surfactant protein A) enzyme in antiviral defense remain poorly understood. SP-A activates macrophage M1 polarization and triggers an antiviral response due to the activation of T-cells and dendritic cells. Therefore, surfactant system is an important element of infection protection and a promising therapeutic target.
基金funding from FCT-Fundação para a Ciência e a Tecnologia under project(s):DOI 10.54499/2022.05946.PTDC,UIDB/04539/2020,UIDP/04539/2020 and LA/P/0058/2020PRR project HfPT.supported by research funding from the European Hematology Association(EHA Physician-Scientist Research Grant),Fundação Amélia de Mello and National Blood Foundation to DD.
文摘More effective approaches are needed in the treatment of blood cancers,in particular acute myeloid leukemia(AML),that are able to eliminate resistant leukemia stem cells(LSCs)at the bone marrow(BM),after a chemotherapy session,and then enhance hematopoietic stem cell(HSC)engraftment for the re-establishment of the HSC compartment.Here,we investigate whether light-activatable nanoparticles(NPs)encapsulating all-trans-retinoic acid(RA^(+)NPs)could solve both problems.Our in vitro results show that mouse AML cells transfected with RA^(+)NPs differentiate towards antitumoral M1 macrophages through RIG.1 and OASL gene expression.Our in vivo results further show that mouse AML cells transfected with RA^(+)NPs home at the BM after transplantation in an AML mouse model.The photo-disassembly of the NPs within the grafted cells by a blue laser enables their differentiation towards a macrophage lineage.This macrophage activation seems to have systemic anti-leukemic effect within the BM,with a significant reduction of leukemic cells in all BM compartments,of animals treated with RA^(+)NPs,when compared with animals treated with empty NPs.In a separate group of experiments,we show for the first time that normal HSCs transfected with RA^(+)NPs show superior engraftment at the BM niche than cells without treatment or treated with empty NPs.This is the first time that the activity of RA is tested in terms of long-term hematopoietic reconstitution after transplant using an in situ activation approach without any exogenous priming or genetic conditioning of the transplanted cells.Overall,the approach documented here has the potential to improve consolidation therapy in AML since it allows a dual intervention in the BM niche:to tackle resistant leukemia and improve HSC engraftment at the same time.
基金supported by the National Key Research and Development Program on Modernization of Traditional Chinese Medicine(No.2022YFC3502100)the National Natural Science Foundation of China(No.82274186)+2 种基金the National High-Level Talents Special Support Programthe Young Talents Promotion Project of China Association of Traditional Chinese Medicine(No.2020-QNRC2-01)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(No.ZYYCXTD-C-202006).
文摘Liver fibrosis is characterized by chronic inflammatory responses and progressive fibrous scar formation.Macrophages play a central role in the pathogenesis of hepatic fibrosis by reconstructing the immune microenvironment.Picroside Ⅱ(PIC Ⅱ),extracted from Picrorhizae Rhizoma,has demonstrated therapeutic potential for various liver damage.However,the mechanisms by which macrophage polarization initiates immune cascades and contributes to the development of liver fibrosis,and whether this process can be influenced by PIC Ⅱ,remain unclear.In the current study,RNA sequencing and multiple molecular approaches were utilized to explore the underlying mechanisms of PIC Ⅱ against liver fibrosis in multidrug-resistance protein 2 knockout(Mdr2^(−/−))mice.Our findings indicate that PIC Ⅱ activates M1-polarized macrophages to recruit natural killer cells(NK cells),potentially via the CXCL16-CXCR6 axis.Additionally,PIC Ⅱ promotes the apoptosis of activated hepatic stellate cells(aHSCs)and enhances the cytotoxic effects of NK cells,while also reducing the formation of neutrophil extracellular traps(NETs).Notably,the anti-hepatic fibrosis effects associated with PIC Ⅱ were largely reversed by macrophage depletion in Mdr2^(−/−)mice.Collectively,our research suggests that PIC Ⅱ is a potential candidate for halting the progression of liver fibrosis.
基金supported by the Natural Science Foundation of Hunan Province(No.2021JJ30516).
文摘Wound healing in diabetic ulcers remains a significant clinical challenge,primarily due to bacterial infection and impaired angiogenesis.Periplaneta americana extract(PAE)has been widely used to treat diabetic wounds,yet its underlying mechanisms are not fully understood.This study aimed to elucidate these mechanisms by analyzing long non-coding RNA(lncRNA)expressions in the wound tissues from diabetic anal fistula patients treated with or without PAE,using high-throughput sequencing.Peripheral blood monocytes from patients were differentiated into M0 macrophages with human macrophage colony-stimulating factor(hMCSF)and subsequently polarized into M1 macrophages with lipopolysaccharide.The results indicated that LINC01133 and SLAMF9 were downregulated in wound tissues of patients treated with PAE.Furthermore,PAE suppressed M1 macrophage polarization and enhanced human umbilical vein endothelial cell(HUVEC)proliferation,migration,and angiogenesis.These effects were diminished when LINC01133 or SLAMF9 were overexpressed.Mechanistically,LINC01133 was shown to upregulate SLAMF9 through interaction with ELAVL1.Overexpression of SLAMF9 reversed the effects of LINC01133 silencing on macrophage polarization and HUVEC functions.In conclusion,PAE facilitates the healing of infected diabetic ulcers by downregulating the LINC01133/SLAMF9 pathway.
基金funded by National Natural Science Foundation of China,grant number 81671924,81272105National Key Research and Development Plan of China,grant number 2017YFC1103301+6 种基金Health and Medical Treatment Collaborative Innovation Major Special Projects of Guangzhou,grant number 201508020253Science and Technology Key Project of Guangdong Province,grant number 2014B020212010Science and Technology Planning Project of Guangdong Province of China,grant number 2015B020233012Military Medical Innovation Special Projects,grant number 18CXZ029Zhejiang Provincial Basic Public Welfare Research Project,grant number GJ19H140001and China’s National Key R&D Programs(NKPs)grant number 2018YFB0407204.
文摘Background:Acute skin wounds may compromise the skin barrier,posing a risk of infection.Small intestinal submucosa(SIS)is widely used to treat acute and chronic wounds.However,the efficacy of SIS to accelerate wound healing still needs to be improved to meet clinical demands.To tackle this problem,platelet-rich plasma(PRP)is used due to its potency to promote proliferation,migration and adhesion of target cells.In this study,we applied PRP and SIS to skin wounds to explore their effects on wound healing by evaluating re-epithelialization,collagen production,angiogenesis and the inflammatory response.Methods:A1×1-cm full-thickness skin defectwas established in mice.Sixty mice were divided into four treatment groups:PRP+SIS,PRP,SIS and control.On days 3,5,7,10 and 14 post-surgery,tissue specimens were harvested.Haematoxylin and eosin,Masson’s trichrome,immunohistochemical and immunofluorescence double staining were used to visualize epidermal thickness,collagen and vascular regeneration and inflammation.Results:Wound contraction in the PRP and PRP+SIS groups was significantly greater,compared with the other groups,on days 3 and 5 post-surgery.A histological analysis showed higher collagen expression in the PRP and PRP+SIS groups on day 7,whichwas associated with a thicker epidermal layer on day 14.In addition,immunohistochemical staining showed that CD31-positive blood vessels and vascular endothelial growth factor expression in the PRP+SIS and PRP groups were significantly higher,compared with the control group.Furthermore,immunofluorescence double staining showed that the number of M1 and M2 macrophages in the PRP+SIS and PRP groups was higher,compared with the control and SIS groups alone,on day 3.However,on day 7,the number of M1 macrophages dramatically decreased in the PRP+SIS and PRP groups.The ratio of M2 to M1 macrophages in the PRP+SIS and PRP groups was 3.97 and 2.93 times that of the control group and 4.56 and 3.37 times that of the SIS group,respectively.Conclusion:Co-administration of SIS and PRP has a better effect on promoting angiogenesis,reepithelialization and collagen regeneration in managing acute wound healing than either agent alone.
基金supported by the National Natural Science Foundation of China(82072425,82072498,81902181,81873990,81873991,and 81672238)the Jiangsu Provincial Medical Youth Talent(QNRC2016751)+4 种基金the Natural Science Foundation of Jiangsu Province(BK20180001)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Special Project of Diagnosis and Treatment Technology for Key Clinical Diseases in Suzhou(LCZX202003)the Program for Introduction of Clinical Medical Teams to Suzhou(SZYJTD201714)Program from Suzhou Science and Technology Bureau(SYS2019101)。
文摘Rheumatoid arthritis(RA)is a chronic inflammatory disease that eventually leads to disability.Inflammatory cell infiltration,severe joint breaking and systemic bone loss are the main clinical symptoms.In this study,we established a collagen-induced arthritis(CIA)model and found a large number of M1 macrophages and pyroptosis,which are important sources of proinflammatory cytokines.Punicalagin(PUN)is an active substance extracted from pomegranate peel.We found that it inhibited joint inflammation,cartilage damage and systemic bone destruction in CIA mice.PUN effectively alleviated the high expression of inflammatory cytokines in synovial tissue in vivo.PUN treatment shifted macrophages from the M1 phenotype to the M2 phenotype after stimulation with lipopolysaccharide(LPS)and interferon(IFN)-γ.The expression of inducible nitric oxide synthase(i NOS)and other proinflammatory cytokines released by M1 macrophages was decreased in the PUN treatment group.However,simultaneously,the expression of markers of anti-inflammatory M2 macrophages,such as arginase(Arg)-1 and interleukin(IL)-10,was increased.In addition,PUN treatment attenuated pyroptosis by downregulating the expression of NLRP3 and caspase-1,thereby preventing inflammatory cell death resulting from the release of IL-1βand IL-18.Mechanistically,PUN inhibited the activation of receptor activators of the nuclear factor-κB(NF-κB)signaling pathway,which contributes to M1 polarization and pyroptosis of macrophages.We concluded that PUN ameliorated pathological inflammation by inhibiting M1 phenotype polarization and pyroptosis and has great potential as a therapeutic treatment for human RA.
基金supported by the National Science Foundation of China(NSFC 81802196,81572129,81872877,91853109,and 81772335)Key Program of NSFC(81730067,China)+3 种基金Special Program of Chinese Academy of Science(XDA16020805,China)Jiangsu Provincial Key Medical Center Foundation(China)Jiangsu Provincial Medical Outstanding Talent Foundation(China)Jiangsu Provincial Key Medical Talent Foundation(China)。
文摘Osteoarthritis(OA),in which M1 macrophage polarization in the synovium exacerbates disease progression,is a major cause of cartilage degeneration and functional disabilities.Therapeutic strategies of OA designed to interfere with the polarization of macrophages have rarely been reported.Here,we report that SHP099,as an allosteric inhibitor of src-homology 2-containing protein tyrosine phosphatase 2(SHP2),attenuated osteoarthritis progression by inhibiting M1 macrophage polarization.We demonstrated that M1 macrophage polarization was accompanied by the overexpression of SHP2 in the synovial tissues of OA patients and OA model mice.Compared to wild-type(WT)mice,myeloid lineage conditional Shp2 knockout(c KO)mice showed decreased M1 macrophage polarization and attenuated severity of synovitis,an elevated expression of cartilage phenotype protein collagen II(COL2),and a decreased expression of cartilage degradation markers collagen X(COL10)and matrix metalloproteinase3(MMP3)in OA cartilage.Further mechanistic analysis showed that SHP099 inhibited lipopolysaccharide(LPS)-induced Toll-like receptor(TLR)signaling mediated by nuclear factor kappa B(NF-κB)and PI3K—AKT signaling.Moreover,intra-articular injection of SHP099 also significantly attenuated OA progression,including joint synovitis and cartilage damage.These results indicated that allosteric inhibition of SHP2 might be a promising therapeutic strategy for the treatment of OA.
基金This work was funded by the National Natural Science Foundation of China(Nos.21874011,91859123,and 32101140)the National Science Fund for Distinguished Young Scholars(No.22025401)+2 种基金the China Postdoctoral Science Foundation(No.2020M680396)China Postdoctoral Science Foundation(Nos.2021TQ0037 and 2021M690405)The National Natural Science Foundation of China(No.21904012)。
文摘Thylakoid(Tk)membranes are of unique superiority in photodynamic therapy(PDT)because they not only carry abundant chlorophylls containing photosensitizer porphyrin but also can produce O_(2).However,the current therapeutic performance of Tk is dramatically limited because of their poor tumor targeting and inefficient O_(2) production.Here,we report an immunomodulatory bio-nanovesicle of Tk membranes fused with M1 macrophage-derived extracellular vesicles(M1 EV)for efficient PDT of tumors.The hybrid nanovesicle Tk@M1 was prepared by squeezing the Tk membranes of spinach with M1 EV.The systemic study confirmed that Tk@M1 can not only actively accumulate in tumors but also effectively regulate the inactive immune microenvironment of tumors.Such activated"hot"tumors significantly enhance the PDT efficacy of Tk@M1 attributed to the increased O_(2) from catalase catalyzed decomposition of augmented H_(2)O_(2),providing a novel idea about constructing natural systems for effective tumor treatment.
基金supported by National Natural Science Foundation of China grants (81760089,82160094 to MJ,82060112 to LD)Jiangxi Provincial Department of Science and Technology,China (20202BAB206087 to MJ).
文摘Background and Aims:Osteopontin(OPN)is reported to be associated with the pathogenesis of nonalcoholic fatty liver disease(NAFLD).However,the function of OPN in NAFLD is still inconclusive.Therefore,our aim in this study was to evaluate the role of OPN in NAFLD and clarify the involved mechanisms.Methods:We analyzed the expression change of OPN in NAFLD by bioinformatic analysis,qRT-PCR,western blotting and immunofluorescence staining.To clarify the role of OPN in NAFLD,the effect of OPN from HepG2 cells on macrophage polarization and the involved mechanisms were examined by FACS and western blotting.Results:OPN was significantly upregulated in NAFLD patients compared with normal volunteers by microarray data,and the high expression of OPN was related with disease stage and progression.OPN level was also significantly increased in liver tissue samples of NAFLD from human and mouse,and in HepG2 cells treated with oleic acid(OA).Furthermore,the supernatants of OPN-treated HepG2 cells promoted the macrophage M1 polarization.Mechanistically,OPN activated the janus kinase 1(JAK1)/signal transducers and activators of transcription 1(STAT1)signaling pathway in HepG2 cells,and consequently HepG2 cells secreted more high-mobility group box 1(HMGB1),thereby promoting macrophage M1 polarization.Conclusions:OPN promoted macrophage M1 polarization by increasing JAK1/STAT1-induced HMGB1 secretion in hepatocytes.