期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effects of Orthogonal Heat Treatment on Microstructure and Mechanical Properties of GN9 Ferritic/Martensitic Steel
1
作者 Tingwei Ma Xianchao Hao Ping Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期289-300,共12页
Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium-cooled fast reactors have been investigated through orthogonal design and analysis.Scanning electron microscopy(SEM),transmission e... Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium-cooled fast reactors have been investigated through orthogonal design and analysis.Scanning electron microscopy(SEM),transmission electron microscopy(TEM),differential scanning calorimeter(DSC),tensile and impact tests were used to evaluate the heat treatment parameters on yield strength,elongation and ductile-to-brittle transition temperature(DBTT).The results indicate that the microstructures of GN9 steel after orthogonal heat treatments consist of tempered martensite,M23C6,MX carbides and MX carbonitrides.The average prior austenite grains increase and the lath width decreases with the austenitizing temperature increasing from 1000°C to 1080°C.Tempering temperature is the most important factor that influences the dislocation evolution,yield strength and elongation compared with austenitizing tempera-ture and cooling methods.Austenitizing temperature,tempering temperature and cooling methods show interactive effects on DBTT.Carbide morphology and distribution,which is influenced by austenitizing and tempering tempera-tures,is the critical microstructural factor that influences the Charpy impact energy and DBTT.Based on the orthogo-nal design and microstructural analysis,the optimal heat treatment of GN9 steel is austenitizing at 1000°C for 0.5 h followed by air cooling and tempering at 760°C for 1.5 h. 展开更多
关键词 Ferritic/Martensitic steel Orthogonal design m23c6 carbide Ductile-to-brittle transition temperature
下载PDF
Phase Transformation Strengthening of Hot Extruded Inconel 625 under High-temperature Load Environment 被引量:2
2
作者 LIU Dexue CUI Maomao +5 位作者 WANG Wenxu NAN Hongqiang CAI Haopeng XUE Hongdi JIA Zhi LI Qinglin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1297-1308,共12页
Microstructure evolution and properties of hot-extruded Inconel 625 alloy were investigated at different creep temperatures, aging time and strain rates. The experimental results indicate that the Inconel 625 alloy ex... Microstructure evolution and properties of hot-extruded Inconel 625 alloy were investigated at different creep temperatures, aging time and strain rates. The experimental results indicate that the Inconel 625 alloy exhibits an excellent creep resistance at 700 ℃ and below. When the creep temperature rises to 750 ℃, the creep resistance falls drastically due to the failure of phase transformation strengthening and the precipitation of a large amount of δ phase and σ phase at the grain boundary. The special temperature-sensitive characteristics of Inconel 625 alloy play a very important role in its fracture. When the strain rate is 8.33×10^-3s^-1, the strength of the specimen is higher than that of other parameters attributed to the effect of phase transformation strengthening. With the increase of Ni3(Al, Ti), the phase transformation strengthening inhibits thickening of the stacking faults into twins and improves the overall mechanical properties of the alloy. With the increase of the aging time, the granular Cr-rich M23C6 carbides continue to precipitate at the grain boundary, which hinders the movement of the dislocations and obviously increases the strength of the samples. Especially, the yield strength increases several times. 展开更多
关键词 hot-extruded Inconel 625 alloy phase transformation strengthening temperature sensitivity characteristics Cr-rich m23c6 carbides δphase
下载PDF
Research and Development of Heat-Resistant Materials for Advanced USC Power Plants with Steam Temperatures of 700℃ and Above 被引量:42
3
作者 Fujio Abe 《Engineering》 SCIE EI 2015年第2期211-224,共14页
Materials-development projects for advanced ultra-supercritical(A-USC) power plants with steam temperatures of 700℃ and above have been performed in order to achieve high efficiency and low CO_2 emissions in Europe, ... Materials-development projects for advanced ultra-supercritical(A-USC) power plants with steam temperatures of 700℃ and above have been performed in order to achieve high efficiency and low CO_2 emissions in Europe, the US, Japan, and recently in China and India as well. These projects involve the replacement of martensitic 9%–12% Cr steels with nickel(Ni)-base alloys for the highest temperature boiler and turbine components in order to provide sufficient creep strength at 700℃ and above. To minimize the requirement for expensive Ni-base alloys, martensitic 9%–12% Cr steels can be applied to the next highest temperature components of an A-USC power plant, up to a maximum of 650℃. This paper comprehensively describes the research and development of Ni-base alloys and martensitic 9%–12% Cr steels for thick section boiler and turbine components of A-USC power plants, mainly focusing on the long-term creep-rupture strength of base metal and welded joints, strength loss in welded joints, creep-fatigue properties, and microstructure evolution during exposure at elevated temperatures. 展开更多
关键词 Ni-base alloy 9%-12% Cr steel creep strength creep-fatigue property welded joint grain boundary microstructure γ' m23c6 carbide
下载PDF
Ripening behavior of M_(23)C_6 carbides in P92 steel during aging at 800°C 被引量:11
4
作者 Xu Yang Bo Liao +3 位作者 Fu-ren Xiao Wei Yan Yi-yin Shan Ke Yang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第8期858-864,共7页
The rapid coarsening of the M_(23)C_6 carbides has been held responsible for the creep fracture in 9-12Cr martensitic heat resistant steels.A commercial P92 steel was subjected to thermal aging at a high temperature... The rapid coarsening of the M_(23)C_6 carbides has been held responsible for the creep fracture in 9-12Cr martensitic heat resistant steels.A commercial P92 steel was subjected to thermal aging at a high temperature of 800°C to investigate the ripening behavior of the M_(23)C_6 carbides.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)were employed to characterize the microstructure evolution,especially the ripening process of the M_(23)C_6 carbides.The new concept of the effective mean size,dependent on the critical radius,was introduced to correct the measured mean size and then the Ostwald theory was applied to describe the ripening behavior of the M_(23)C_6 carbides.The ripening of the M_(23)C_6 carbides was revealed to be grain boundary diffusion controlled. 展开更多
关键词 P92steel m23c6 carbide Aging Ripening
原文传递
On Laves phase in a 9Cr3W3CoB martensitic heat resistant steel when aged at high temperatures 被引量:3
5
作者 Ye Liang Wei Yan +5 位作者 Xianbo Shi Yanfen Li Quanqiang Shi Wei Wang Yiyin Shan Ke Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第26期129-140,共12页
9Cr3W3 CoB steels are developed to serve at the temperature range of 620-650℃,and have been recognized as the most promising martensitic heat-resistant steels for supercritical power plants.Due to the high W and Co c... 9Cr3W3 CoB steels are developed to serve at the temperature range of 620-650℃,and have been recognized as the most promising martensitic heat-resistant steels for supercritical power plants.Due to the high W and Co contents,the Fe_(2)W Laves phase in such 9Cr3W3 CoB steel possesses some specialties in thermodynamics.In the present research,it was found that even when aged at 800℃in the 9Cr3W3 CoB steel,instead of dissolving,Laves phase formed after 50 h and kept on increasing in size and number density until 1000 h,indicating that the Laves phase was marching for the thermodynamic equilibrium during aging.In this thermodynamic process,the W-rich M_(3)B_(2)borides in as-received steel and M23C6 carbides were revealed to dissolve,supporting the growth of Laves phase.SEM investigation indicates that Laves phase tended to form clusters,and finally grow as a unit bulk Laves phase with an irregular shape.Besides,Laves phase nucleated next to M23C6 carbides and enwrapped them inside at 800℃.In addition,the growth processes of Laves phase and M23C6 carbides were a competitive procedure,the coarsening of M23C6 carbides was prior to the growth of Laves phase at 750℃while the growth of Laves phase was prior to the coarsening of M23C6 carbides at 800℃. 展开更多
关键词 9Cr3W3Co steel AGING Laves phase COBALT m23c6 carbides
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部