The isothermal compression of M50 steel is carried out on a Gleeble-3500 thermo-mechanical simulator in temperature range of 1 223-1 423 K and strain rates range of 10-70 s^-1. The results show that the carbides play ...The isothermal compression of M50 steel is carried out on a Gleeble-3500 thermo-mechanical simulator in temperature range of 1 223-1 423 K and strain rates range of 10-70 s^-1. The results show that the carbides play a significant role in the flow behavior and microstructure evolution during isothermal compression of M50 steel. The average apparent activation energy for deformation in isothermal compression of M50 steel is (281.1±42.6) kJ·mol^-1 at the strains of 0.4-0.8. The dynamic recrystallization of austenite grains occurs in isothermal compression of M50 steel at 1 363 K and 1 393 K, enhancing with the increase of strain rate and/or strain. The volume fraction of the carbides decreases with the increase of deformation temperature during isothermal compression of M50 steel and the fine carbides inhibit the dynamic recrystallization of austenite grain. With the occurrence of dynamic recrystallization, the austenite grains are refined, leading to a minor increase in the flow stress and apparent activation energy for deformation in isothermal compression of M50 steel. The austenite grains begin to coarsen at 1 423 K and dynamic recrystallization is limited. Hot working of M50 steel should not be performed above 1 393 K in order to achieve good workability.展开更多
M50 steel was irradiated by high current pulsed electron beam(HCPEB)with different pulses.The subsequent tempering was carried out between 500 and 625℃.Microstructure evolution was analyzed by scanning electron micro...M50 steel was irradiated by high current pulsed electron beam(HCPEB)with different pulses.The subsequent tempering was carried out between 500 and 625℃.Microstructure evolution was analyzed by scanning electron microscopy and X-ray diffraction.It is found that the HCPEB treatment could constrain martainsite transformation in the surface layer of the samples.Tempered behavior of HCPEB remelted layer strongly depends on the proportion of retained austenite.Austenite saturated more carbon and metallic elements depict higher tempering stability.During tempered process,carbides precipitates among the grain and phase boundaries.The decreased solution of the elements promotes the retained austenite into martensite.展开更多
The influence of different cryogenic sequences on the rolling contact fatigue(RCF)life of M50-bearing steel has been studied.The results show that direct cryogenic treatment after quenching can effectively improve RCF...The influence of different cryogenic sequences on the rolling contact fatigue(RCF)life of M50-bearing steel has been studied.The results show that direct cryogenic treatment after quenching can effectively improve RCF life.The L_(10)life is strikingly 5 times longer than that with cryogenic treatment after tem-pering.This is caused by the distinct lattice construction of martensite and the transformation of retained austenite.More secondary nanocarbides and fine twins are formed via cryogenic treatment before tem-pering compared with cryogenic treatment after tempering.The improvement in the RCF life of the steel is attributed to the joint effects of the secondary nanocarbides and twin boundaries with a width of 5-13 nm,which delays significantly crack initiation and propagation.This study highlights a common method to improve the service life of high-carbon and high-alloy steels by adjusting the cryogenic se-quence.展开更多
The influences of primary carbide size and type on the sliding wear behavior and rolling contact fatigue (RCF) properties of M50 bearing steel were systematically investigated under oil lubrication condition. A major ...The influences of primary carbide size and type on the sliding wear behavior and rolling contact fatigue (RCF) properties of M50 bearing steel were systematically investigated under oil lubrication condition. A major breakthrough was achieved in the influence of primary carbide on tribological behavior. The opposite effect brought by primary carbide size on the sliding wear resistance and RCF life of M50 bearing steel was determined. Wear resistance increased with an increase in the studied primary carbide size, whereas RCF life decreased significantly. Compared with the 0 R and R positions with a relatively small carbide size, the wear volume of the 1/2 R position with a large carbide size was the smallest. Compared with the 0 R and R positions, the L10 life of the 1/2 R position decreased by 82.7% and 84.8%, respectively. On the basis of the statistical correlation between primary carbide size and the two tribological properties, a critical maximum carbide size of 5-10 μm was proposed to achieve optimal tribological performance. This research suggests that the equivalent diameter of the primary carbide should be controlled to be smaller than 10 μm, but further decreasing primary carbide size to less than 5 μm is unnecessary. The influence of primary carbide type in M50 bearing steel on sliding wear resistance was also discussed. Results indicate that the MC-type carbides with higher elastic modulus and microhardness exhibit better wear resistance than the M2C-type carbides.展开更多
文摘The isothermal compression of M50 steel is carried out on a Gleeble-3500 thermo-mechanical simulator in temperature range of 1 223-1 423 K and strain rates range of 10-70 s^-1. The results show that the carbides play a significant role in the flow behavior and microstructure evolution during isothermal compression of M50 steel. The average apparent activation energy for deformation in isothermal compression of M50 steel is (281.1±42.6) kJ·mol^-1 at the strains of 0.4-0.8. The dynamic recrystallization of austenite grains occurs in isothermal compression of M50 steel at 1 363 K and 1 393 K, enhancing with the increase of strain rate and/or strain. The volume fraction of the carbides decreases with the increase of deformation temperature during isothermal compression of M50 steel and the fine carbides inhibit the dynamic recrystallization of austenite grain. With the occurrence of dynamic recrystallization, the austenite grains are refined, leading to a minor increase in the flow stress and apparent activation energy for deformation in isothermal compression of M50 steel. The austenite grains begin to coarsen at 1 423 K and dynamic recrystallization is limited. Hot working of M50 steel should not be performed above 1 393 K in order to achieve good workability.
基金National Basic Research Program of China(2007CB607602)NSFC(50875058)+1 种基金Heilongjiang excellent young scientists found(JC200901)the Program of Excellent Teams of Harbin Institute of Technology
文摘M50 steel was irradiated by high current pulsed electron beam(HCPEB)with different pulses.The subsequent tempering was carried out between 500 and 625℃.Microstructure evolution was analyzed by scanning electron microscopy and X-ray diffraction.It is found that the HCPEB treatment could constrain martainsite transformation in the surface layer of the samples.Tempered behavior of HCPEB remelted layer strongly depends on the proportion of retained austenite.Austenite saturated more carbon and metallic elements depict higher tempering stability.During tempered process,carbides precipitates among the grain and phase boundaries.The decreased solution of the elements promotes the retained austenite into martensite.
基金supported by the National Natural Science Foun-dation(Grant No.52031013)the National Key Research and Development Program(Grant No.2018YFA0702900).
文摘The influence of different cryogenic sequences on the rolling contact fatigue(RCF)life of M50-bearing steel has been studied.The results show that direct cryogenic treatment after quenching can effectively improve RCF life.The L_(10)life is strikingly 5 times longer than that with cryogenic treatment after tem-pering.This is caused by the distinct lattice construction of martensite and the transformation of retained austenite.More secondary nanocarbides and fine twins are formed via cryogenic treatment before tem-pering compared with cryogenic treatment after tempering.The improvement in the RCF life of the steel is attributed to the joint effects of the secondary nanocarbides and twin boundaries with a width of 5-13 nm,which delays significantly crack initiation and propagation.This study highlights a common method to improve the service life of high-carbon and high-alloy steels by adjusting the cryogenic se-quence.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDC04040402)the financial and facility support for Liaoning Key Laboratory of Aero-engine Material Tribology.
文摘The influences of primary carbide size and type on the sliding wear behavior and rolling contact fatigue (RCF) properties of M50 bearing steel were systematically investigated under oil lubrication condition. A major breakthrough was achieved in the influence of primary carbide on tribological behavior. The opposite effect brought by primary carbide size on the sliding wear resistance and RCF life of M50 bearing steel was determined. Wear resistance increased with an increase in the studied primary carbide size, whereas RCF life decreased significantly. Compared with the 0 R and R positions with a relatively small carbide size, the wear volume of the 1/2 R position with a large carbide size was the smallest. Compared with the 0 R and R positions, the L10 life of the 1/2 R position decreased by 82.7% and 84.8%, respectively. On the basis of the statistical correlation between primary carbide size and the two tribological properties, a critical maximum carbide size of 5-10 μm was proposed to achieve optimal tribological performance. This research suggests that the equivalent diameter of the primary carbide should be controlled to be smaller than 10 μm, but further decreasing primary carbide size to less than 5 μm is unnecessary. The influence of primary carbide type in M50 bearing steel on sliding wear resistance was also discussed. Results indicate that the MC-type carbides with higher elastic modulus and microhardness exhibit better wear resistance than the M2C-type carbides.