期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
下垫面热力作用对黄海春季海雾的影响--观测与数值试验 被引量:60
1
作者 张苏平 任兆鹏 《气象学报》 CAS CSCD 北大核心 2010年第4期439-449,共11页
利用海上浮标站、高分辨率数字式探空仪等多种观测手段和中尺度模式WRF,对2008年5月2—3日黄海发生的一次海雾过程进行了观测分析和数值模拟。观测表明,出现海雾时,气温明显下降,气海温差(海表面以上2 m气温减海表面以下1m水温)减小,不... 利用海上浮标站、高分辨率数字式探空仪等多种观测手段和中尺度模式WRF,对2008年5月2—3日黄海发生的一次海雾过程进行了观测分析和数值模拟。观测表明,出现海雾时,气温明显下降,气海温差(海表面以上2 m气温减海表面以下1m水温)减小,不足0.5℃,浓雾时,甚至出现海温(SST)高于气温的现象。较强的湍流活动出现在大气边界层低层150 m以下。反映了低层大气稳定性减弱,可能有利于海雾的维持。海雾消散阶段,海气温差明显加大,湍流强度减弱,湍流发展高度升高。海雾过程中,可能存在动量下传的局地海-气相互作用机制,SST的升高可使雾中能见度好转。数值模拟的结果与观测基本一致,雾区内的气海温差明显小于雾区外,敏感性试验进一步表明:100 m以下气层稳定性和湍流发展条件对SST的变化敏感。SST的变化对稳定度的影响和对雾区范围的影响与近海面的水汽含量有关:在湿度较小(q<0.5 g/kg)的薄海雾区,SST增加1℃,稳定度明显减弱(θ_v/z≤0.01 K/m),海雾面积缩小;SST下降1℃,稳定度增加(θ_v/z≥0.07 K/m),薄海雾面积增大。在湿度较大(q>0.6 g/kg)的浓海雾区,SST的变化对静力稳定度的影响不大,海雾仍然维持。因此,当海气温差减小,甚至出现SST高于气温时,如果仍然有海雾,则一般是水汽含量比较大的浓海雾。该结果有助于对海雾形成机制的认识。 展开更多
关键词 黄海海雾 海表面热状况 数值试验 MABL 稳定度
下载PDF
25-羟维生素D与高血压肾损害的相关性研究分析 被引量:1
2
作者 白鑫 赵兴胜 《内蒙古医学杂志》 2021年第5期513-517,521,共6页
目的通过观察原发性高血压及高血压肾损害患者血清25-羟维生素D浓度变化及与其他指标的相关性,探讨其在高血压及高血压肾损害中的作用及临床意义。方法收集原发性高血压病人80例,根据24 h尿蛋白定量结果分为单纯高血压组42例和高血压肾... 目的通过观察原发性高血压及高血压肾损害患者血清25-羟维生素D浓度变化及与其他指标的相关性,探讨其在高血压及高血压肾损害中的作用及临床意义。方法收集原发性高血压病人80例,根据24 h尿蛋白定量结果分为单纯高血压组42例和高血压肾损害组38例,另将体检中心提供的40例健康人群设为对照组,收集所有受试者的性别、年龄、身高、体重、入院血压、空腹血糖、血脂、肾功能等指标,分析血清25-羟维生素D水平与各临床指标及高血压、高血压肾损害的相关性。结果(1)3组性别、年龄、身高、体重差异无统计学意义(P>0.05);(2)对照组的血压均低于单纯高血压组及高血压肾损害组,差异有统计学意义(P<0.05);(3)3组空腹血糖、高密度脂蛋白胆固醇、三酰甘油差异无统计学意义(P>0.05);(4)对照组胆固醇、低密度脂蛋白胆固醇、hsCRP、胱抑素C均低于单纯高血压组及高血压早期肾损害组,差异具有统计学意义(P<0.05);(5)单纯高血压组胆固醇、低密度脂蛋白胆固醇、hsCRP、胱抑素C低于高血压早期肾损害组,差异具有统计学意义(P<0.05);(6)单纯高血压组Scr高于对照组(P<0.05),但仍在正常范围;BUN差异无统计学意义(P>0.05)。高血压肾损害组BUN及Scr均高于单纯高血压组及对照组(P<0.05);(7)对照组25-羟维生素D水平高于单纯高血压组及高血压肾损害组,差异具有统计学意义(P<0.05);单纯高血压组25-羟维生素D水平高于高血压早期肾损害组,差异具有统计学意义(P<0.05);(8)单纯高血压组与高血压早期肾损害组24 h尿微量蛋白差异具有统计学意义(P<0.05);25-羟维生素D水平与其他各项观察指标进行双变量直线相关性分析。结论Pearson相关分析结果表明:全部高血压患者25-羟维生素D与收缩压、舒张压、总胆固醇、低密度脂蛋白、胱抑素C及hsCRP呈负相关,差异有统计学意义(P<0.05)。高血压早期肾损害组25-羟维生素D水平与24 h尿微量白蛋白呈负相关,差异具有统计学意义(P<0.05)。 展开更多
关键词 高血压 高血压肾损害 mABL 25-羟维生素D
下载PDF
Seasonal response of surface wind to SST perturbation in the Northern Hemisphere
3
作者 HE Jingjing HAN Xueshuang LIN Xiaopei 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第4期1165-1175,共11页
The seasonal response of surface wind speed to sea surface temperature (SST) change in the Northern Hemisphere was investigated using 10 years (2002-2011) high-resolution satellite observations and reanalysis data. Th... The seasonal response of surface wind speed to sea surface temperature (SST) change in the Northern Hemisphere was investigated using 10 years (2002-2011) high-resolution satellite observations and reanalysis data. The results showed that correlation between surface wind speed perturbations and SST perturbations exhibits remarkable seasonal variation, with more positive correlation is stronger in the cold seasons than in the warm seasons. This seasonality in a positive correlation between SST and surface wind speed is attributable primarily to seasonal changes of oceanic and atmospheric background conditions in frontal regions. The mean SST gradient and the prevailing surface winds are strong in winter and weak in summer. Additionally, the eddy-induced response of surface wind speed is stronger in winter than in summer, although the locations and numbers of mesoscale eddies do not show obvious seasonal features. The response of surface wind speed is apparently due to stability and mixing within the marine atmospheric boundary layer (MABL), modulated by SST perturbations. In the cold seasons, the stronger positive (negative) SST perturbations are easier to increase (decrease) the MABL height and trigger (suppress) momentum vertical mixing, contributing to the positive correlation between SST and surface wind speed. In comparison, SST perturbations are relatively weak in the warm seasons, resulting in a weak response of surface wind speed to SST changes. This result holds for each individual region with energetic eddy activity in the Northern Hemisphere. 展开更多
关键词 SEASONALITY positive correlation sea surface temperature (SST) gradient marine atmospheric boundary layer (MABL) height MESOSCALE EDDY
下载PDF
Co-variation of the surface wind speed and the sea surface temperature over mesoscale eddies in the Gulf Stream region:momentum vertical mixing aspect
4
作者 HE Jingjing LIN Xiaopei 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第4期1154-1164,共11页
The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show t... The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl). 展开更多
关键词 GULF Stream positive sea SURFACE temperature (SST)-surface wind speed correlation marine atmospheric boundary layer (MABL) height MESOSCALE EDDY MOMENTUM vertical mixing
下载PDF
Maintenance and Sudden Change of a Strong Elevated Ducting Event Associated with High Pressure and Marine Low-Level Jet 被引量:2
5
作者 Zhichao LIANG Juli DING +2 位作者 Jianfang FEI Xiaoping CHENG Xiaogang HUANG 《Journal of Meteorological Research》 SCIE CSCD 2020年第6期1287-1298,共12页
Capture of a strong elevated ducting event,especially its maintenance and sudden change,is of great value to airborne radar to achieve its beyond-the-line-of-sight detection.However,the knowledge is not easily accessi... Capture of a strong elevated ducting event,especially its maintenance and sudden change,is of great value to airborne radar to achieve its beyond-the-line-of-sight detection.However,the knowledge is not easily accessible over the open ocean and hence very rare.During the Air–Sea Interaction Survey(ASIS)over the western North Pacific(WNP)in May 2016,a strong elevated ducting event with a long-life period and sudden change in its evolution was observed.Measurements from the ASIS,images from the Himawari-8 satellite,reanalysis data from the ECMWF,and Weather Research and Forecasting(WRF)model,were used to analyze the maintenance and sudden change of this strong ducting event,together with the model performance on simulating it.The results showed that the maintenance of strong elevated ducts,with their tops ranging from 750 to 1050 m and average strength of approximately 38 M units,was caused by a strong dry air mass capping over the wet marine atmospheric boundary layer(MABL),together with the subsidence inversion associated with high pressure.The WRF model performs well in simulating them.However,a sudden increase in duct height with a slight decrease of strength was recorded by the subsequent GPS radiosonde,which was finally contributed to the mechanical turbulent inversion and hydrolapse associated with the marine low-level jet(MLLJ).The height of the maximum horizontal wind speed(Umh)of the MLLJ corresponds well with the bottom of the trapping layer.However,these jet-relevant ducts are generally weak and it is difficult to accurately simulate them by using the mesoscale numerical model,since the wind-shear produced eddies are too small to be properly parameterized. 展开更多
关键词 atmospheric ducts elevated ducts marine atmospheric boundary layer(MABL) low-level jet numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部