期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Algebraic Structure of Discrete Zero Curvature Equations and Master Symmetries of Discrete Evolution Equations
1
作者 Lin Luo 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第2期127-130,共4页
In this paper, based on a discrete spectral problem and the corresponding zero curvature representation,the isospectral and nonisospectral lattice hierarchies are proposed. An algebraic structure of discrete zero curv... In this paper, based on a discrete spectral problem and the corresponding zero curvature representation,the isospectral and nonisospectral lattice hierarchies are proposed. An algebraic structure of discrete zero curvature equations is then established for such integrable systems. the commutation relations of Lax operators corresponding to the isospectral and non-isospectral lattice flows are worked out, the master symmetries of each lattice equation in the isospectral hierarchyand are generated, thus a τ-symmetry algebra for the lattice integrable systems is engendered from this theory. 展开更多
关键词 discrete spectral problem lattice hierarchy algebraic structure master symmetry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部