The modeling of PV (photovoltaic) systems is very crucial for embedded power system applications and maximum power point tracking. This paper presents a PV array model using Matlab/Simulink with the assistance of Si...The modeling of PV (photovoltaic) systems is very crucial for embedded power system applications and maximum power point tracking. This paper presents a PV array model using Matlab/Simulink with the assistance of SimPowerSystem toolbox. The PV cell is considered as the main building block for simulating and monitoring the PV array performance. The PV model has been developed and used as Simulink subsystems where the effect of solar insolation and PV array temperature on commercial PV modules have been studied throughout the simulated I-V and P-V output characteristics. The proposed model facilitates simulating the dynamic performance of PV-based power systems. The effect of different partial shading patterns of PV arrays under different configurations has been studied.展开更多
The spin-transfer-torque(STT)magnetic tunneling junction(MTJ)device is one of the prominent candidates for spintronic logic circuit and neuromorphic computing.Therefore,building a simulation framework of hybrid STT-MT...The spin-transfer-torque(STT)magnetic tunneling junction(MTJ)device is one of the prominent candidates for spintronic logic circuit and neuromorphic computing.Therefore,building a simulation framework of hybrid STT-MTJ/CMOS(complementary metal-oxide-semiconductor)circuits is of great value for designing a new kind of computing paradigm based on the spintronic devices.In this work,we develop a simulation framework of hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink,which is mainly composed of a physics-based STT-MTJ model,a controlled resistor,and a current sensor.In the proposed framework,the STT-MTJ model,based on the Landau-Lifshitz-Gilbert-Slonczewsk(LLGS)equation,is implemented using the MATLAB script.The proposed simulation framework is modularized design,with the advantage of simple-to-use and easy-to-expand.To prove the effectiveness of the proposed framework,the STT-MTJ model is benchmarked with experimental results.Furthermore,the pre-charge sense amplifier(PCSA)circuit consisting of two STT-MTJ devices is validated and the electrical coupling of two spin-torque oscillators is simulated.The results demonstrate the effectiveness of our simulation framework.展开更多
文摘The modeling of PV (photovoltaic) systems is very crucial for embedded power system applications and maximum power point tracking. This paper presents a PV array model using Matlab/Simulink with the assistance of SimPowerSystem toolbox. The PV cell is considered as the main building block for simulating and monitoring the PV array performance. The PV model has been developed and used as Simulink subsystems where the effect of solar insolation and PV array temperature on commercial PV modules have been studied throughout the simulated I-V and P-V output characteristics. The proposed model facilitates simulating the dynamic performance of PV-based power systems. The effect of different partial shading patterns of PV arrays under different configurations has been studied.
基金Project supported by the National Natural Science Foundation of China(Grant No.62004223)the Science and Technology Innovation Program of Hunan Province,China(Grant No.2022RC1094)+1 种基金the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,China(Grant No.KF202012)the Hunan Provincial Science Innovation Project for Postgraduate,China(Grant No.CX20210086).
文摘The spin-transfer-torque(STT)magnetic tunneling junction(MTJ)device is one of the prominent candidates for spintronic logic circuit and neuromorphic computing.Therefore,building a simulation framework of hybrid STT-MTJ/CMOS(complementary metal-oxide-semiconductor)circuits is of great value for designing a new kind of computing paradigm based on the spintronic devices.In this work,we develop a simulation framework of hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink,which is mainly composed of a physics-based STT-MTJ model,a controlled resistor,and a current sensor.In the proposed framework,the STT-MTJ model,based on the Landau-Lifshitz-Gilbert-Slonczewsk(LLGS)equation,is implemented using the MATLAB script.The proposed simulation framework is modularized design,with the advantage of simple-to-use and easy-to-expand.To prove the effectiveness of the proposed framework,the STT-MTJ model is benchmarked with experimental results.Furthermore,the pre-charge sense amplifier(PCSA)circuit consisting of two STT-MTJ devices is validated and the electrical coupling of two spin-torque oscillators is simulated.The results demonstrate the effectiveness of our simulation framework.