在复杂环境下,由于行人密度大以及运动随机性,导致运动目标(行人)难以检测和跟踪,造成人员计数误差。提出一种MB-LBP(Multi-scale Block Local Binary Pattern)特征提取和粒子滤波相结合的运动目标检测与跟踪算法来解决此问题。该算法...在复杂环境下,由于行人密度大以及运动随机性,导致运动目标(行人)难以检测和跟踪,造成人员计数误差。提出一种MB-LBP(Multi-scale Block Local Binary Pattern)特征提取和粒子滤波相结合的运动目标检测与跟踪算法来解决此问题。该算法首先用AdaBoost提取MB-LBP特征训练生成分类器进行人头检测,并根据人头目标尺寸变化范围去除部分误检,然后用改进的粒子滤波算法预测跟踪多个运动目标,最后对跟踪的运动目标进行计数。实验结果表明,提出的算法能够对复杂环境下多个运动目标进行有效检测及跟踪,准确、快速地对视频帧中的人员进行计数。展开更多
文摘在复杂环境下,由于行人密度大以及运动随机性,导致运动目标(行人)难以检测和跟踪,造成人员计数误差。提出一种MB-LBP(Multi-scale Block Local Binary Pattern)特征提取和粒子滤波相结合的运动目标检测与跟踪算法来解决此问题。该算法首先用AdaBoost提取MB-LBP特征训练生成分类器进行人头检测,并根据人头目标尺寸变化范围去除部分误检,然后用改进的粒子滤波算法预测跟踪多个运动目标,最后对跟踪的运动目标进行计数。实验结果表明,提出的算法能够对复杂环境下多个运动目标进行有效检测及跟踪,准确、快速地对视频帧中的人员进行计数。