This present research work focuses on the valorization of pig droppings for production of biogas in mono digestion and co-digestion with proportions of cow dung from the urban commune of N’Zérékoré. It...This present research work focuses on the valorization of pig droppings for production of biogas in mono digestion and co-digestion with proportions of cow dung from the urban commune of N’Zérékoré. It was carried out in December 2020 in the Physics laboratory of the University of N’Zérékoré. The anaerobic digestion process took 25 days in an almost constant ambient temperature of 25˚C. Five digesters were loaded on 12/06/2020, two of which with 1 kg of pig dung and 1 kg of cow dung both in mono-digestion. The 3 other digesters in co-digestion with different proportions of pig manure and cow dung. The substrate in each digester is diluted in 2 liters of water, with a proportion of (1/2). The main results obtained are: 1) the evolution of the temperature and pH during digestion process, 2) the average biogas productions 0.61 liters for (D1);1.20 liter for (D2);1.65 liter for (D3);1.51 liter for (D4) and 1.31 liter for (D5). The cumulative amounts of biogas are respectively: D1 (7.95 liters), D2 (15.60 liters), D3 (21.50 liters), D4 (19.65 liters) and D5 (17.05 liters). The total cumulative production is 81.75 liters at the end of the process. The originality of this research work is that the proposed model examines the relation between the daily biogas production and the variation of temperature, pH and pressure. The combustibility test showed the biogas produced during the first week was no combustible (contains less than 50% methane). Combustion started from the biogas produced from the 15th day and it is from the 20th day that a significant amount of stable yellow/blue flame was observed. The results of this study show the combination of pig manure and cow dung presents advantages for optimal biogas production.展开更多
Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- a...Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.展开更多
The current financial education framework has an increasing need to introduce tools that facilitate the application of theoretical models to real-world data and contexts.However,only a limited number of free tools are...The current financial education framework has an increasing need to introduce tools that facilitate the application of theoretical models to real-world data and contexts.However,only a limited number of free tools are available for this purpose.Given this lack of tools,the present study provides two approaches to facilitate the implementa-tion of an event study.The first approach consists of a set of MS Excel files based on the Fama–French five-factor model,which allows the application of the event study methodology in a semi-automatic manner.The second approach is an open-source R-programmed tool through which results can be obtained in the context of an event study without the need for programming knowledge.This tool widens the calculus possibilities provided by the first approach and offers the option to apply not only the Fama–French five-factor model but also other models that are common in the finan-cial literature.It is a user-friendly tool that enables reproducibility of the analysis and ensures that the calculations are free of manipulation errors.Both approaches are freely available and ready-to-use.展开更多
Forest habitats are critical for biodiversity,ecosystem services,human livelihoods,and well-being.Capacity to conduct theoretical and applied forest ecology research addressing direct(e.g.,deforestation)and indirect(e...Forest habitats are critical for biodiversity,ecosystem services,human livelihoods,and well-being.Capacity to conduct theoretical and applied forest ecology research addressing direct(e.g.,deforestation)and indirect(e.g.,climate change)anthropogenic pressures has benefited considerably from new field-and statistical-techniques.We used machine learning and bibliometric structural topic modelling to identify 20 latent topics comprising four principal fields from a corpus of 16,952 forest ecology/forestry articles published in eight ecology and five forestry journals between 2010 and 2022.Articles published per year increased from 820 in 2010 to 2,354 in 2021,shifting toward more applied topics.Publications from China and some countries in North America and Europe dominated,with relatively fewer articles from some countries in West and Central Africa and West Asia,despite globally important forest resources.Most study sites were in some countries in North America,Central Asia,and South America,and Australia.Articles utilizing R statistical software predominated,increasing from 29.5%in 2010 to 71.4%in 2022.The most frequently used packages included lme4,vegan,nlme,MuMIn,ggplot2,car,MASS,mgcv,multcomp and raster.R was more often used in forest ecology than applied forestry articles.R software offers advantages in script and workflow-sharing compared to other statistical packages.Our findings demonstrate that the disciplines of forest ecology/forestry are expanding both in number and scope,aided by more sophisticated statistical tools,to tackle the challenges of redressing forest habitat loss and the socio-economic impacts of deforestation.展开更多
为倡导绿色出行理念,解决以往研究在处理重复观测数据时容易忽视的潜在相关性和个体异质性问题,针对如何利用智能手机APP提供的多模式出行信息引导小汽车出行者转向停车换乘(Park-and-Ride,P+R)模式进行了探究,同时引入广义线性混合模型...为倡导绿色出行理念,解决以往研究在处理重复观测数据时容易忽视的潜在相关性和个体异质性问题,针对如何利用智能手机APP提供的多模式出行信息引导小汽车出行者转向停车换乘(Park-and-Ride,P+R)模式进行了探究,同时引入广义线性混合模型(Generalized Linear Mixed Model,GLMM)分析了多模式出行信息对小汽车出行者转向P+R意向的影响。首先,基于上海市路网设计意向调查问卷,整合了自驾和P+R两种出行方式的道路拥堵程度、出行时间、停车费用及地铁车厢座位情况等信息,并运用全因子设计法构建了24种不同信息水平组合的假设情景。然后,通过智能手机APP界面示意图向小汽车出行者展示这些多模式出行信息,并收集其转向P+R的意向数据。最后,运用GLMM方法处理同一个体重复决策数据中潜在的相关性和捕捉个体间的异质性。结果显示,GLMM的应用不仅解决了同一个体重复决策间的相关性,还揭示了不同个体对道路拥堵程度和地铁车厢座位情况的差异化关注;智能手机APP整合的多模式出行信息显著提升了小汽车出行者转向P+R的意愿,且这一转变占比达29.2%;高收入、长驾龄以及对P+R政策不了解的出行者转向P+R的意愿较低。研究表明,通过智能手机APP整合自驾和P+R的多模式出行信息能显著增强P+R方式的吸引力,可为提升P+R的普及率提供新思路,有效促进小汽车出行者向绿色出行方式的转变。展开更多
本文收集了广州地区2003年至2022年的中医药卫生技术人员和医院床位数等数据,采用R语言构建自回归整合移动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)进行中医药卫生资源配置预测研究,分析了广州市中医药卫生资...本文收集了广州地区2003年至2022年的中医药卫生技术人员和医院床位数等数据,采用R语言构建自回归整合移动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)进行中医药卫生资源配置预测研究,分析了广州市中医药卫生资源的情况以及发展趋势,为广州市相关中医药卫生政策制定提供参考依据。展开更多
文摘This present research work focuses on the valorization of pig droppings for production of biogas in mono digestion and co-digestion with proportions of cow dung from the urban commune of N’Zérékoré. It was carried out in December 2020 in the Physics laboratory of the University of N’Zérékoré. The anaerobic digestion process took 25 days in an almost constant ambient temperature of 25˚C. Five digesters were loaded on 12/06/2020, two of which with 1 kg of pig dung and 1 kg of cow dung both in mono-digestion. The 3 other digesters in co-digestion with different proportions of pig manure and cow dung. The substrate in each digester is diluted in 2 liters of water, with a proportion of (1/2). The main results obtained are: 1) the evolution of the temperature and pH during digestion process, 2) the average biogas productions 0.61 liters for (D1);1.20 liter for (D2);1.65 liter for (D3);1.51 liter for (D4) and 1.31 liter for (D5). The cumulative amounts of biogas are respectively: D1 (7.95 liters), D2 (15.60 liters), D3 (21.50 liters), D4 (19.65 liters) and D5 (17.05 liters). The total cumulative production is 81.75 liters at the end of the process. The originality of this research work is that the proposed model examines the relation between the daily biogas production and the variation of temperature, pH and pressure. The combustibility test showed the biogas produced during the first week was no combustible (contains less than 50% methane). Combustion started from the biogas produced from the 15th day and it is from the 20th day that a significant amount of stable yellow/blue flame was observed. The results of this study show the combination of pig manure and cow dung presents advantages for optimal biogas production.
文摘Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.
基金the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement of the Catalan government,and to Universitat Ramon Llull for their financial support.The financial support for this work did not influence its outcome.
文摘The current financial education framework has an increasing need to introduce tools that facilitate the application of theoretical models to real-world data and contexts.However,only a limited number of free tools are available for this purpose.Given this lack of tools,the present study provides two approaches to facilitate the implementa-tion of an event study.The first approach consists of a set of MS Excel files based on the Fama–French five-factor model,which allows the application of the event study methodology in a semi-automatic manner.The second approach is an open-source R-programmed tool through which results can be obtained in the context of an event study without the need for programming knowledge.This tool widens the calculus possibilities provided by the first approach and offers the option to apply not only the Fama–French five-factor model but also other models that are common in the finan-cial literature.It is a user-friendly tool that enables reproducibility of the analysis and ensures that the calculations are free of manipulation errors.Both approaches are freely available and ready-to-use.
基金financially supported by the National Natural Science Foundation of China(31971541).
文摘Forest habitats are critical for biodiversity,ecosystem services,human livelihoods,and well-being.Capacity to conduct theoretical and applied forest ecology research addressing direct(e.g.,deforestation)and indirect(e.g.,climate change)anthropogenic pressures has benefited considerably from new field-and statistical-techniques.We used machine learning and bibliometric structural topic modelling to identify 20 latent topics comprising four principal fields from a corpus of 16,952 forest ecology/forestry articles published in eight ecology and five forestry journals between 2010 and 2022.Articles published per year increased from 820 in 2010 to 2,354 in 2021,shifting toward more applied topics.Publications from China and some countries in North America and Europe dominated,with relatively fewer articles from some countries in West and Central Africa and West Asia,despite globally important forest resources.Most study sites were in some countries in North America,Central Asia,and South America,and Australia.Articles utilizing R statistical software predominated,increasing from 29.5%in 2010 to 71.4%in 2022.The most frequently used packages included lme4,vegan,nlme,MuMIn,ggplot2,car,MASS,mgcv,multcomp and raster.R was more often used in forest ecology than applied forestry articles.R software offers advantages in script and workflow-sharing compared to other statistical packages.Our findings demonstrate that the disciplines of forest ecology/forestry are expanding both in number and scope,aided by more sophisticated statistical tools,to tackle the challenges of redressing forest habitat loss and the socio-economic impacts of deforestation.
文摘为倡导绿色出行理念,解决以往研究在处理重复观测数据时容易忽视的潜在相关性和个体异质性问题,针对如何利用智能手机APP提供的多模式出行信息引导小汽车出行者转向停车换乘(Park-and-Ride,P+R)模式进行了探究,同时引入广义线性混合模型(Generalized Linear Mixed Model,GLMM)分析了多模式出行信息对小汽车出行者转向P+R意向的影响。首先,基于上海市路网设计意向调查问卷,整合了自驾和P+R两种出行方式的道路拥堵程度、出行时间、停车费用及地铁车厢座位情况等信息,并运用全因子设计法构建了24种不同信息水平组合的假设情景。然后,通过智能手机APP界面示意图向小汽车出行者展示这些多模式出行信息,并收集其转向P+R的意向数据。最后,运用GLMM方法处理同一个体重复决策数据中潜在的相关性和捕捉个体间的异质性。结果显示,GLMM的应用不仅解决了同一个体重复决策间的相关性,还揭示了不同个体对道路拥堵程度和地铁车厢座位情况的差异化关注;智能手机APP整合的多模式出行信息显著提升了小汽车出行者转向P+R的意愿,且这一转变占比达29.2%;高收入、长驾龄以及对P+R政策不了解的出行者转向P+R的意愿较低。研究表明,通过智能手机APP整合自驾和P+R的多模式出行信息能显著增强P+R方式的吸引力,可为提升P+R的普及率提供新思路,有效促进小汽车出行者向绿色出行方式的转变。
文摘本文收集了广州地区2003年至2022年的中医药卫生技术人员和医院床位数等数据,采用R语言构建自回归整合移动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)进行中医药卫生资源配置预测研究,分析了广州市中医药卫生资源的情况以及发展趋势,为广州市相关中医药卫生政策制定提供参考依据。