Objective:To evaluate of hesperidin to overcome resistance of doxorubicin in MCF-7 resistant doxorubicin cells(MCF-7/Dox)in cytotoxicity apoptosis and P-glycoprotein(Pgp)expression in combination with doxorubicin.Meth...Objective:To evaluate of hesperidin to overcome resistance of doxorubicin in MCF-7 resistant doxorubicin cells(MCF-7/Dox)in cytotoxicity apoptosis and P-glycoprotein(Pgp)expression in combination with doxorubicin.Methods:The cytotoxic properties.50%inhibition concentration(IC_(50))and its combination with doxorubicin in MCF-7 cell lines resistant to doxorubicin(MCF-7/Dox)cells were determined using MTT assay.Apoptosis induction was examined by double staining assay using ethidium bromide-acridine orange.Immunocytochemistry assay was performed to determine the level and localization of Pgp.Results:Single treatment of hesperidin showed cytotoxic activity on MCF-7/Dox cells with IC_(50)value of 11μmol/L.Thus,combination treatment from hesperidin and doxorubicin showed addictive and antagonist effect(CI>1.0).Hesperidin did not increase the apoptotic induction,but decreased the Pgp expressions level when combined with doxorubicin in low concentration.Conclusions:Hesperidin has cytotoxic effect on MCF-7/Dox cells with IC_(50)of 11μmol/L.Hesperidin did not increased the apoptotic induction combined with doxorubicin.Cochemotherapy application of doxorubicin and hesperidin on MCF-7/Dox cells showed synergism effect through inhibition of Pgp expression.展开更多
Objective:To determine the structure of triterpenoid isolated from avocado seeds and the cytotoxic effect on MCF-7 and Hep G2 cells.Methods:The powder sample was macerated with ethanol,followed with separation of the ...Objective:To determine the structure of triterpenoid isolated from avocado seeds and the cytotoxic effect on MCF-7 and Hep G2 cells.Methods:The powder sample was macerated with ethanol,followed with separation of the extract by column chromatography.The target compound was monitored on thin layer chromatography plate and reagent Lieberman–Buchard.The isolated compound was characterized by spectral analysis,mainly ultraviolet,infrared,and liquid chromatographymass spectroscopy and their spectroscopic data with those reported in literature were compared.In vitro cytotoxic activity was investigated against Vero,MCF-7,and Hep G2 cell lines using MTT assay.Results:A triterpenoid compound was isolated from ethanol extract.The extracts,fraction(F3),and the isolated compound showed a significant cytotoxic activity against all investigated cell lines.MTT assay showed that the triterpenoid isolate inhibited cell proliferation of MCF-7 and Hep G2 cell line with the IC50 values of 62 mg/m L and 12 mg/m L,respectively,and was safe to normal cells.Conclusions:The results of the present study reveal that triterpenoid from avocado seeds have the potential for further development as anticancer agents.展开更多
Fucoidan is an active component of seaweed, which inhibits proliferation and induces apoptosis of several tumor cells while the detailed mechanisms underlying this process are still not clear. In this study, the effec...Fucoidan is an active component of seaweed, which inhibits proliferation and induces apoptosis of several tumor cells while the detailed mechanisms underlying this process are still not clear. In this study, the effect of Fucoidan on the proliferation and apoptosis of human breast cancer MCF-7 cells and the molecular mechanism of Fucoidan action were investigated. Viable cell number of MCF-7 cells was decreased by Fucoidan treatment in a dose-dependent manner as measured by MTT assay. Fucoidan treatment resulted in G1 phase arrest of MCF-7 cells as revealed by flow cytometry, which was associated with the decrease in the gene expression of cyclin D 1 and CDK-4. Annexin V/PI staining results showed that the number of apoptotic cells was associated with regulation of cytochrome C, cas- pase-8, Bax and Bcl-2 at transcriptional and translational levels. Both morphologic observation and Hoechst 33258 assay results confirmed the pro-apoptotic effect of Fucoidan. Meanwhile, the ROS pro- duction was also increased by Fucoidan treatment, which suggested that Fucoidan induced oxidative damage in MCF-7 cells. The results of present study demonstrated that Fucoidan could induce GI phase arrest and apoptosis in MCF-7 cells through regulating the cell cycle and apoptosis-related genes or proteins expression, and ROS generation is also involved in these processes.展开更多
Objective: To investigate whether dietary daidzein interact with endogenous 17β-Estradiol (E2) to give rise to additive or inhibitory effects on proliferation and apoptosis in breast cancer cells. Methods: Cell ...Objective: To investigate whether dietary daidzein interact with endogenous 17β-Estradiol (E2) to give rise to additive or inhibitory effects on proliferation and apoptosis in breast cancer cells. Methods: Cell cycle distribution and apoptosis induction were analyzed by using flow cytometry when breast cancer cell lines MCF-7 were cotreated with daidzein (1, 5 μmol/L) and E2 (0.1-10 nmol/L) for 5 days. Whether daidzein could alter E2-modulated mRNA expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERI3) and ERβ-estrogen response element (ERE) dependent transcription was investigated by RT-PCR and luciferase induction assays. The effects of daidzein on E2-modulated expression of proapoptotic p53, bax and antiapoptotic bcl-2 at both mRNA and protein levels were also investigated by RT-PCR and Western blot. Results: Daidzein enhanced the antiapoptotic effect in an Ea dose-dependent manner, but had no effect on E2-induced proliferation. Daidzein antagonized E2-induced ERβ mRNA expression and ERβ-ERE dependent transcription. In addition, daidzein only antagonized E2-upregulated expression of p53 and bax, but had no effect on E2-upregulated expression of bcl-2. Conclusion: Daidzein enhances the antiapoptotic effect of E2 on breast cancer cells by inhibiting E2-mediated p53-bax proapoptotic pathway. These results suggest that dietary daidzein may enhance deleterious effect of endogenous E2 in hormone-dependent breast cancer.展开更多
Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell ...Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell culture and immunocytochemical techniques, we examined the cell growth, DNA synthesis, expression of PCNA, cyclin A, B1, D1, p16ink4a and p21cip/waf1 of MCF-7 cells at various c9,t11-CLA concentrations (25μM, 50μM, 100μM and 200μM), at 24h and 48h. 96% ethand was used as negative control. Results: The cell growth and DNA synthesis of MCF-7 cells were inhibited by c9,t11-CLA. After treatment with various doses of c9,t11-CLA mentioned above for 8 days, the inhibition frequency was 27.18%, 35.43%, 91.05%, and 92.86%, respectively. Inhibitory effect of c9,t11-CLA on DNA synthesis (except for 25μM, 24h) was demonstrated by significantly less incorporation of 3H-TdR than the negative control (P<0.05 and P<0.01). To further investigate the influence of the cell cycle progression, we found that c9,t11-CLA may arrest the cell cycle of MCF-7 cells. Immunocytochemical staining demonstrated that incubation with different concentration of c9,t11-CLA at various times significantly decreased the expression of PCNA, Cyclin A, B1, D1 in MCF-7 cells compared to the negative control (P<0.01), whereas the expression of p16ink4a and p21cip/waf1, cyclin-dependent kinases inhibitors (CDKI), were increased. Conclusions: The cell growth and proliferation of MCF-7 cells is inhibited by c9,t11-CLA via blocking cell cycle, accompanying reduced expression of cyclin A, B1, D1 and enhanced expression of CDKI (p16ink4a and p21cip/waf1).展开更多
基金Supported by DP2M DIKTI(Directorate of higher Education)Ministry of Education Indonesia trough HKI research grant 2011
文摘Objective:To evaluate of hesperidin to overcome resistance of doxorubicin in MCF-7 resistant doxorubicin cells(MCF-7/Dox)in cytotoxicity apoptosis and P-glycoprotein(Pgp)expression in combination with doxorubicin.Methods:The cytotoxic properties.50%inhibition concentration(IC_(50))and its combination with doxorubicin in MCF-7 cell lines resistant to doxorubicin(MCF-7/Dox)cells were determined using MTT assay.Apoptosis induction was examined by double staining assay using ethidium bromide-acridine orange.Immunocytochemistry assay was performed to determine the level and localization of Pgp.Results:Single treatment of hesperidin showed cytotoxic activity on MCF-7/Dox cells with IC_(50)value of 11μmol/L.Thus,combination treatment from hesperidin and doxorubicin showed addictive and antagonist effect(CI>1.0).Hesperidin did not increase the apoptotic induction,but decreased the Pgp expressions level when combined with doxorubicin in low concentration.Conclusions:Hesperidin has cytotoxic effect on MCF-7/Dox cells with IC_(50)of 11μmol/L.Hesperidin did not increased the apoptotic induction combined with doxorubicin.Cochemotherapy application of doxorubicin and hesperidin on MCF-7/Dox cells showed synergism effect through inhibition of Pgp expression.
基金Supported by Ministry of Finance of Indonesia through Education Fund Management Institution(LPDP)under a contract number PRJ-541/LPDP.3/2016
文摘Objective:To determine the structure of triterpenoid isolated from avocado seeds and the cytotoxic effect on MCF-7 and Hep G2 cells.Methods:The powder sample was macerated with ethanol,followed with separation of the extract by column chromatography.The target compound was monitored on thin layer chromatography plate and reagent Lieberman–Buchard.The isolated compound was characterized by spectral analysis,mainly ultraviolet,infrared,and liquid chromatographymass spectroscopy and their spectroscopic data with those reported in literature were compared.In vitro cytotoxic activity was investigated against Vero,MCF-7,and Hep G2 cell lines using MTT assay.Results:A triterpenoid compound was isolated from ethanol extract.The extracts,fraction(F3),and the isolated compound showed a significant cytotoxic activity against all investigated cell lines.MTT assay showed that the triterpenoid isolate inhibited cell proliferation of MCF-7 and Hep G2 cell line with the IC50 values of 62 mg/m L and 12 mg/m L,respectively,and was safe to normal cells.Conclusions:The results of the present study reveal that triterpenoid from avocado seeds have the potential for further development as anticancer agents.
基金supported by grants from The National Maritime Bureau Public Science and Technology Research Funds Projects of Ocean(No.201005013)the Wuhan Municipal Science and Technology Research Project of China(No.201260523185)
文摘Fucoidan is an active component of seaweed, which inhibits proliferation and induces apoptosis of several tumor cells while the detailed mechanisms underlying this process are still not clear. In this study, the effect of Fucoidan on the proliferation and apoptosis of human breast cancer MCF-7 cells and the molecular mechanism of Fucoidan action were investigated. Viable cell number of MCF-7 cells was decreased by Fucoidan treatment in a dose-dependent manner as measured by MTT assay. Fucoidan treatment resulted in G1 phase arrest of MCF-7 cells as revealed by flow cytometry, which was associated with the decrease in the gene expression of cyclin D 1 and CDK-4. Annexin V/PI staining results showed that the number of apoptotic cells was associated with regulation of cytochrome C, cas- pase-8, Bax and Bcl-2 at transcriptional and translational levels. Both morphologic observation and Hoechst 33258 assay results confirmed the pro-apoptotic effect of Fucoidan. Meanwhile, the ROS pro- duction was also increased by Fucoidan treatment, which suggested that Fucoidan induced oxidative damage in MCF-7 cells. The results of present study demonstrated that Fucoidan could induce GI phase arrest and apoptosis in MCF-7 cells through regulating the cell cycle and apoptosis-related genes or proteins expression, and ROS generation is also involved in these processes.
基金supported by the National Natural Science Foundation of China (No.30671508)by State Key Laboratory for Agrobiotechnology of China (No.2009SKLAB07-5)
文摘Objective: To investigate whether dietary daidzein interact with endogenous 17β-Estradiol (E2) to give rise to additive or inhibitory effects on proliferation and apoptosis in breast cancer cells. Methods: Cell cycle distribution and apoptosis induction were analyzed by using flow cytometry when breast cancer cell lines MCF-7 were cotreated with daidzein (1, 5 μmol/L) and E2 (0.1-10 nmol/L) for 5 days. Whether daidzein could alter E2-modulated mRNA expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERI3) and ERβ-estrogen response element (ERE) dependent transcription was investigated by RT-PCR and luciferase induction assays. The effects of daidzein on E2-modulated expression of proapoptotic p53, bax and antiapoptotic bcl-2 at both mRNA and protein levels were also investigated by RT-PCR and Western blot. Results: Daidzein enhanced the antiapoptotic effect in an Ea dose-dependent manner, but had no effect on E2-induced proliferation. Daidzein antagonized E2-induced ERβ mRNA expression and ERβ-ERE dependent transcription. In addition, daidzein only antagonized E2-upregulated expression of p53 and bax, but had no effect on E2-upregulated expression of bcl-2. Conclusion: Daidzein enhances the antiapoptotic effect of E2 on breast cancer cells by inhibiting E2-mediated p53-bax proapoptotic pathway. These results suggest that dietary daidzein may enhance deleterious effect of endogenous E2 in hormone-dependent breast cancer.
基金This work was supported by the National Natural Science Foundation of China(No.39870661). Phone: (0086-451)-3641309 Fax: (0086-451)-3641253
文摘Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell culture and immunocytochemical techniques, we examined the cell growth, DNA synthesis, expression of PCNA, cyclin A, B1, D1, p16ink4a and p21cip/waf1 of MCF-7 cells at various c9,t11-CLA concentrations (25μM, 50μM, 100μM and 200μM), at 24h and 48h. 96% ethand was used as negative control. Results: The cell growth and DNA synthesis of MCF-7 cells were inhibited by c9,t11-CLA. After treatment with various doses of c9,t11-CLA mentioned above for 8 days, the inhibition frequency was 27.18%, 35.43%, 91.05%, and 92.86%, respectively. Inhibitory effect of c9,t11-CLA on DNA synthesis (except for 25μM, 24h) was demonstrated by significantly less incorporation of 3H-TdR than the negative control (P<0.05 and P<0.01). To further investigate the influence of the cell cycle progression, we found that c9,t11-CLA may arrest the cell cycle of MCF-7 cells. Immunocytochemical staining demonstrated that incubation with different concentration of c9,t11-CLA at various times significantly decreased the expression of PCNA, Cyclin A, B1, D1 in MCF-7 cells compared to the negative control (P<0.01), whereas the expression of p16ink4a and p21cip/waf1, cyclin-dependent kinases inhibitors (CDKI), were increased. Conclusions: The cell growth and proliferation of MCF-7 cells is inhibited by c9,t11-CLA via blocking cell cycle, accompanying reduced expression of cyclin A, B1, D1 and enhanced expression of CDKI (p16ink4a and p21cip/waf1).