Silica mesoporous material MCFs with 16.0 nm pore sizes was prepared by using non-ionic block copolymers and the swelling agents, and was used as the support for the immobilization of enzyme. Penicillin G acylase, an ...Silica mesoporous material MCFs with 16.0 nm pore sizes was prepared by using non-ionic block copolymers and the swelling agents, and was used as the support for the immobilization of enzyme. Penicillin G acylase, an enzyme, was assembled in the channel of MCFs by immersion method. The activity and stability of immobilized penicillin G acylase were studied. It was found that the activity and stability of the immobilized penicillin G acylase increased significantly compared to those of free enzyme. The optimum reaction temperature is 60 ℃. After incubation at 60 ℃ for 1 h, the activity of these immobilized penicillin G acylase remains 69%. These results showed that thermostability and durability on heating of the immobilized penicillin G acylase in MCFs was improved remarkably. The silica mesoporous material MCFs with 3-dimensional channel structure is a good support for the immobilization of enzyme.展开更多
以水热法合成出介孔泡沫二氧化硅材料(MCFs),以MCFs吸附茜素红S得到最佳吸附条件,最大吸附容量为3.750 mg/g。从293.15~323.15 K温度区间获得了吸附体系的热力学性质,反应焓变△H0=48.038 k J/mol>0,说明MCFs吸附茜素红S的过程属于...以水热法合成出介孔泡沫二氧化硅材料(MCFs),以MCFs吸附茜素红S得到最佳吸附条件,最大吸附容量为3.750 mg/g。从293.15~323.15 K温度区间获得了吸附体系的热力学性质,反应焓变△H0=48.038 k J/mol>0,说明MCFs吸附茜素红S的过程属于吸热反应。熵变△S0=243.3 J/(mol·K)>0,说明MCFs吸附茜素红S为熵增加过程。该温度区间吸附反应的自由能变化值△G0<0,该吸附处于自发反应,而且吸附反应同时伴随物理吸附和化学吸附。MCFs吸附茜素红S的过程符合动力学准二阶方程。Freundlich吸附等温方程拟合效果较之Langmuir更好,吸附结果符合Freundlich吸附等温线,该吸附过程属于多分子层吸附。展开更多
Nano mesocellular foam silica(MCFs)was synthesized through the hydrothermal method in this study.Powder X-ray diffraction and scanning electron microscopy were used to characterize the MCFs sample.The sample presented...Nano mesocellular foam silica(MCFs)was synthesized through the hydrothermal method in this study.Powder X-ray diffraction and scanning electron microscopy were used to characterize the MCFs sample.The sample presented spherical particles and regular morphology.The results of transmission electron microscopy showed that synthesized MCFs has a three-dimensional honeycomb pore structure,which aids in the adsorption of nickel ion(Ni^2+).The results of low-temperature nitrogen gas adsorption-desorption showed that the pore diameter of the synthesized MCFs was 19.6 nm.The impacts of pH,temperature,amount of adsorbent,initial concentration of Ni^2+,and contact time on the adsorption effect of Ni^2+ by MCFs were studied.Under the optimized adsorption conditions,the adsorption rate reached 96.10%and the adsorption capacity was 7.69 mg/g.It has been determined through the study of kinetics and adsorption isotherms that the adsorption of Ni^2+ by MCFs follows the pattern of the pseudo-second-order kinetic model,simultaneously belonging to the Freundlich adsorption type.The thermodynamic results of adsorption showed that,when the temperature is between 25℃ and 45℃,the adsorption is a spontaneous exothermic reaction.展开更多
The intricacies of Alzheimer’s disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms,particularly DNA methylation.This review comprehensively surveys recent human-centere...The intricacies of Alzheimer’s disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms,particularly DNA methylation.This review comprehensively surveys recent human-centered studies that investigate whole genome DNA methylation in Alzheimer’s disease neuropathology.The examination of various brain regions reveals distinctive DNA methylation patterns that associate with the Braak stage and Alzheimer’s disease progression.The entorhinal cortex emerges as a focal point due to its early histological alterations and subsequent impact on downstream regions like the hippocampus.Notably,ANK1 hypermethylation,a protein implicated in neurofibrillary tangle formation,was recurrently identified in the entorhinal cortex.Further,the middle temporal gyrus and prefrontal cortex were shown to exhibit significant hypermethylation of genes like HOXA3,RHBDF2,and MCF2L,potentially influencing neuroinflammatory processes.The complex role of BIN1 in late-onset Alzheimer’s disease is underscored by its association with altered methylation patterns.Despite the disparities across studies,these findings highlight the intricate interplay between epigenetic modifications and Alzheimer’s disease pathology.Future research efforts should address methodological variations,incorporate diverse cohorts,and consider environmental factors to unravel the nuanced epigenetic landscape underlying Alzheimer’s disease progression.展开更多
This conference report summarizes recent progress in plasma theory and simulation that was presented in contributed papers and discussions at the 11th Conference on Magnetic Confined Fusion Theory and Simulation(CMCFT...This conference report summarizes recent progress in plasma theory and simulation that was presented in contributed papers and discussions at the 11th Conference on Magnetic Confined Fusion Theory and Simulation(CMCFTS)held in Chengdu,China,27–30 October,2023.Progress in various fields has been achieved.For example,results on zonal flow generation by mode coupling,simulations of the key physics of divertor detachment,energetic particle effects on magnetohydrodynamic(MHD)modes in addition to ion-and electron-scale turbulence,physics of edge coherent modes and edge-localized modes,and the optimization of ion heating schemes as well as confinement scenarios using advanced integrated modeling are presented at the conference.In this conference,the scientific research groups were organized into six categories:(a)edge and divertor physics;(b)impurity,heating,and current drive;(c)energetic particle physics;(d)turbulent transport;(e)MHD instability;and(f)integrated modeling and code development.A summary of the highlighted progress in these working groups is presented.展开更多
Breast cancer,a predominant global health issue,requires ongoing exploration of new therapeutic strategies.Palbociclib(PAL),a well-known cyclin-dependent kinase(CDK)inhibitor,plays a critical role in breast cancer tre...Breast cancer,a predominant global health issue,requires ongoing exploration of new therapeutic strategies.Palbociclib(PAL),a well-known cyclin-dependent kinase(CDK)inhibitor,plays a critical role in breast cancer treatment.While its efficacy is recognized,the interplay between PAL and cellular autophagy,particularly in the context of the RAF/MEK/ERK signaling pathway,remains insufficiently explored.This study investigates PAL’s inhibitory effects on breast cancer using both in vitro(MCF7 and MDA-MB-468 cells)and in vivo(tumor-bearing nude mice)models.Aimed at elucidating the impact of PAL on autophagic processes and exploring the potential of combining it with trametinib(TRA),an MEK inhibitor,our research seeks to address the challenge of PAL-induced drug resistance.Ourfindings reveal that PAL significantly decreases the viability of MCF7 and MDA-MB-468 cells and reduces tumor size in mice while showing minimal cytotoxicity in MCF10A cells.However,PAL also induces protective autophagy,potentially leading to drug resistance via the RAF/MEK/ERK pathway activation.Introducing TRA effectively neutralized this autophagy,enhancing PAL’s anti-tumor efficacy.A combination of PAL and TRA synergistically reduced cell viability and proliferation,and in vivo studies showed notable tumor size reduction.In conclusion,the PAL and TRA combination emerges as a promising strategy for overcoming PAL-induced resistance,offering a new horizon in breast cancer treatment.展开更多
文摘Silica mesoporous material MCFs with 16.0 nm pore sizes was prepared by using non-ionic block copolymers and the swelling agents, and was used as the support for the immobilization of enzyme. Penicillin G acylase, an enzyme, was assembled in the channel of MCFs by immersion method. The activity and stability of immobilized penicillin G acylase were studied. It was found that the activity and stability of the immobilized penicillin G acylase increased significantly compared to those of free enzyme. The optimum reaction temperature is 60 ℃. After incubation at 60 ℃ for 1 h, the activity of these immobilized penicillin G acylase remains 69%. These results showed that thermostability and durability on heating of the immobilized penicillin G acylase in MCFs was improved remarkably. The silica mesoporous material MCFs with 3-dimensional channel structure is a good support for the immobilization of enzyme.
基金supported by the Natural Science Foundation of the Department of Science and Technology of Jilin Province,China(Grants No.20180101180JC,222180102051,and KYC-JC-XM-2018-051)
文摘Nano mesocellular foam silica(MCFs)was synthesized through the hydrothermal method in this study.Powder X-ray diffraction and scanning electron microscopy were used to characterize the MCFs sample.The sample presented spherical particles and regular morphology.The results of transmission electron microscopy showed that synthesized MCFs has a three-dimensional honeycomb pore structure,which aids in the adsorption of nickel ion(Ni^2+).The results of low-temperature nitrogen gas adsorption-desorption showed that the pore diameter of the synthesized MCFs was 19.6 nm.The impacts of pH,temperature,amount of adsorbent,initial concentration of Ni^2+,and contact time on the adsorption effect of Ni^2+ by MCFs were studied.Under the optimized adsorption conditions,the adsorption rate reached 96.10%and the adsorption capacity was 7.69 mg/g.It has been determined through the study of kinetics and adsorption isotherms that the adsorption of Ni^2+ by MCFs follows the pattern of the pseudo-second-order kinetic model,simultaneously belonging to the Freundlich adsorption type.The thermodynamic results of adsorption showed that,when the temperature is between 25℃ and 45℃,the adsorption is a spontaneous exothermic reaction.
文摘The intricacies of Alzheimer’s disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms,particularly DNA methylation.This review comprehensively surveys recent human-centered studies that investigate whole genome DNA methylation in Alzheimer’s disease neuropathology.The examination of various brain regions reveals distinctive DNA methylation patterns that associate with the Braak stage and Alzheimer’s disease progression.The entorhinal cortex emerges as a focal point due to its early histological alterations and subsequent impact on downstream regions like the hippocampus.Notably,ANK1 hypermethylation,a protein implicated in neurofibrillary tangle formation,was recurrently identified in the entorhinal cortex.Further,the middle temporal gyrus and prefrontal cortex were shown to exhibit significant hypermethylation of genes like HOXA3,RHBDF2,and MCF2L,potentially influencing neuroinflammatory processes.The complex role of BIN1 in late-onset Alzheimer’s disease is underscored by its association with altered methylation patterns.Despite the disparities across studies,these findings highlight the intricate interplay between epigenetic modifications and Alzheimer’s disease pathology.Future research efforts should address methodological variations,incorporate diverse cohorts,and consider environmental factors to unravel the nuanced epigenetic landscape underlying Alzheimer’s disease progression.
文摘This conference report summarizes recent progress in plasma theory and simulation that was presented in contributed papers and discussions at the 11th Conference on Magnetic Confined Fusion Theory and Simulation(CMCFTS)held in Chengdu,China,27–30 October,2023.Progress in various fields has been achieved.For example,results on zonal flow generation by mode coupling,simulations of the key physics of divertor detachment,energetic particle effects on magnetohydrodynamic(MHD)modes in addition to ion-and electron-scale turbulence,physics of edge coherent modes and edge-localized modes,and the optimization of ion heating schemes as well as confinement scenarios using advanced integrated modeling are presented at the conference.In this conference,the scientific research groups were organized into six categories:(a)edge and divertor physics;(b)impurity,heating,and current drive;(c)energetic particle physics;(d)turbulent transport;(e)MHD instability;and(f)integrated modeling and code development.A summary of the highlighted progress in these working groups is presented.
基金supported by the Sichuan Science and Technology Program(Grant Nos.2020YJ0494,24GJHZ0058,21RCYJ0021,and 2022YFS0620)the National Natural Science Foundation of China(Grant No.81903829)+1 种基金the Southwest Medical University Science and Technology Program(Grant Nos.2021ZKZD015,2021ZKZD018,and 2021ZKMS046)the Macao Science and Technology Development Fund of Macao SAR(Project Nos.SKLQRCM(MUST)-2020-2022 and MUST-SKL-2021-005).
文摘Breast cancer,a predominant global health issue,requires ongoing exploration of new therapeutic strategies.Palbociclib(PAL),a well-known cyclin-dependent kinase(CDK)inhibitor,plays a critical role in breast cancer treatment.While its efficacy is recognized,the interplay between PAL and cellular autophagy,particularly in the context of the RAF/MEK/ERK signaling pathway,remains insufficiently explored.This study investigates PAL’s inhibitory effects on breast cancer using both in vitro(MCF7 and MDA-MB-468 cells)and in vivo(tumor-bearing nude mice)models.Aimed at elucidating the impact of PAL on autophagic processes and exploring the potential of combining it with trametinib(TRA),an MEK inhibitor,our research seeks to address the challenge of PAL-induced drug resistance.Ourfindings reveal that PAL significantly decreases the viability of MCF7 and MDA-MB-468 cells and reduces tumor size in mice while showing minimal cytotoxicity in MCF10A cells.However,PAL also induces protective autophagy,potentially leading to drug resistance via the RAF/MEK/ERK pathway activation.Introducing TRA effectively neutralized this autophagy,enhancing PAL’s anti-tumor efficacy.A combination of PAL and TRA synergistically reduced cell viability and proliferation,and in vivo studies showed notable tumor size reduction.In conclusion,the PAL and TRA combination emerges as a promising strategy for overcoming PAL-induced resistance,offering a new horizon in breast cancer treatment.