A series of 3.0Mo/MCM-22-Al2O3 catalysts with γ-Al2O3 contents in the range of 0-100 wt% were prepared and applied in the metathesis reaction of ethene and butene-2. Addition of γ-Al2O3did not affect the structure o...A series of 3.0Mo/MCM-22-Al2O3 catalysts with γ-Al2O3 contents in the range of 0-100 wt% were prepared and applied in the metathesis reaction of ethene and butene-2. Addition of γ-Al2O3did not affect the structure of MCM-22 zeolite as evidenced by XRD and N2 adsorption measurements. It was deduced from TPR experiments that γ-Al2O3 phase favored the formation of polymolybdate or multilayered Mo oxide, while more Al2(MoO4)3 species were generated over MCM-22 zeolites. Alumina content in the support was directly related to the metathesis activity of ethene and butene-2 to propene. Mo species with higher valence (Mo6+or Mo5+) contributed more to the excellent performance of catalyst than metallic Mo. The best catalyst activity and stability was obtained over 3.0Mo/(MCM-22-30%Al2O3) under the reaction condition of 1.0 MPa and 125℃ using N2 as the pretreatment gas.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 20903088 and 20773120)the Ministry of Science and Technology of China through the National Key Project of Fundamental Research (Grant No.2009CB623507)
文摘A series of 3.0Mo/MCM-22-Al2O3 catalysts with γ-Al2O3 contents in the range of 0-100 wt% were prepared and applied in the metathesis reaction of ethene and butene-2. Addition of γ-Al2O3did not affect the structure of MCM-22 zeolite as evidenced by XRD and N2 adsorption measurements. It was deduced from TPR experiments that γ-Al2O3 phase favored the formation of polymolybdate or multilayered Mo oxide, while more Al2(MoO4)3 species were generated over MCM-22 zeolites. Alumina content in the support was directly related to the metathesis activity of ethene and butene-2 to propene. Mo species with higher valence (Mo6+or Mo5+) contributed more to the excellent performance of catalyst than metallic Mo. The best catalyst activity and stability was obtained over 3.0Mo/(MCM-22-30%Al2O3) under the reaction condition of 1.0 MPa and 125℃ using N2 as the pretreatment gas.