基于MCMD_Z(maximum consistency with minimum distance and robust Z-score)算法思想,提出了一种稳健的且适用于平面、二次曲面(球、圆柱、圆锥)基元高精度拟合算法.算法依据距离和最小准则,从含有粗差的点集中选取最佳点子集拟合可...基于MCMD_Z(maximum consistency with minimum distance and robust Z-score)算法思想,提出了一种稳健的且适用于平面、二次曲面(球、圆柱、圆锥)基元高精度拟合算法.算法依据距离和最小准则,从含有粗差的点集中选取最佳点子集拟合可靠模型初值,并采用稳健Z分数方法循环剔除粗差;对剔除粗差后的保留点集采用加权最小二乘迭代方法拟合.实验表明,对粗差含量较高的点云数据,该算法均能有效剔除粗差、拟合出高精度的几何基元.展开更多
文摘基于MCMD_Z(maximum consistency with minimum distance and robust Z-score)算法思想,提出了一种稳健的且适用于平面、二次曲面(球、圆柱、圆锥)基元高精度拟合算法.算法依据距离和最小准则,从含有粗差的点集中选取最佳点子集拟合可靠模型初值,并采用稳健Z分数方法循环剔除粗差;对剔除粗差后的保留点集采用加权最小二乘迭代方法拟合.实验表明,对粗差含量较高的点云数据,该算法均能有效剔除粗差、拟合出高精度的几何基元.