As a key carrier supporting urban ecological health and living environment quality,urban ecological network is a key focus of current urban green space research.Jingzhou City of Hubei Province is taken as the research...As a key carrier supporting urban ecological health and living environment quality,urban ecological network is a key focus of current urban green space research.Jingzhou City of Hubei Province is taken as the research object.Relying on GIS technology platform,MSPA method is used to analyze the landscape pattern of Jingzhou City.On this basis,the landscape connectivity evaluation method is used to accurately identify and extract the source areas with important ecological value in Jingzhou City.Then,the normalization method and weighting method are combined to create a resistance factor evaluation system to construct the resistance surface.Based on the MCR model,the ecological network of Jingzhou City is successfully constructed,and targeted spatial optimization strategies and development suggestions are proposed.展开更多
The middle reaches of the Yellow River represent an important area for the protection and development of the Yellow River Basin.Most of the area of the river basin is within the Loess Plateau,which establishes it as a...The middle reaches of the Yellow River represent an important area for the protection and development of the Yellow River Basin.Most of the area of the river basin is within the Loess Plateau,which establishes it as a fragile ecological environment.Firstly,using high-resolution data of land use in the watershed from the past 30 years,landscape ecological risk(LER)sample units are defined and an ecological risk index(ERI)model is constructed.Kriging interpolation is used to display the LER spatial patterns,and the temporal and spatial evolution of risk is examined.Secondly,the spatial evolution of land use landscape change(LULC)is analyzed,and the correlation between land use landscape and ecological risk is discussed.Finally,Based on the LER model,a risk-based minimum cumulative resistance(MCR)model is established,and a comprehensive protection and management network system for the ecological source-corridor-node system designed.The results suggest that in the past 30 years,LER has a high spatial correlation and areas with extremely high ecological risks are concentrated in northwest and southeast areas of the region,of which the northwest area accounts for the highest proportion.Risk intensity is closely related to the spatial pattern of land use landscape.ERI values of forestland,grasslands,and unused land and farmland are low,medium,and high,respectively.The trend of risk evolution is“overall improvement and partial deterioration”.Man-made construction and exploitation is the most direct reason for the increase of local ecological risks.The high ecological-risk areas in the northwest are dominated by deserts which reduce excessive interference by human activities on the natural landscape.Recommendations are:high-quality farmland should be protected;forestland should be restored and rebuilt;repair and adjust the existing ecosystem to assist in landscape regeneration and reconstruction;utilize the overall planning vision of“mountain,water,forest,field,lake,grass,sand”to design a management project at the basin scale;adhere to problem-oriented and precise policy implementation.展开更多
As an important and typical arid inland region in China,Shiyang River Basin plays an important role in maintaining the sustainable development of eco-environment,whose ecological land suitability restricts the develop...As an important and typical arid inland region in China,Shiyang River Basin plays an important role in maintaining the sustainable development of eco-environment,whose ecological land suitability restricts the development of the local human activities.Therefore,Shiyang River Basin was selected as the case study,the minimum cumulative resistance(MCR)model and GIS technique were integrated to create land suitability evaluation map.We calculated the MCR value of ecological source and living source,and divided the whole basin into five partitions according to the difference between ecological source and living source,and analyzed the patterns and characteristics of the ecological land suitability evaluation(ELSE)regions,respectively.The results showed that:1)The suitable ecological land includes prohibited development region and restricted development region,which accounts for 15.45%and 23.35%of the total land area of the Shiyang River Basin,respectively.These two regions mainly distributed high altitude region in the southern Qilian Mountain and low altitude region where had high density of rivers.2)The protection of ecological land requires not only conserving existing ecological land but also focusing on ecological buffer belts around ecological sources and improving ecological land service ability.3)Ecological networks should be constructed through artificial planting trees around the boundary of oasis and ecological restoration region.Buffer greenbelts should also be established between optimized development region and ecological restoration region.展开更多
基金by Jingzhou Science and Technology Program(2023EC45).
文摘As a key carrier supporting urban ecological health and living environment quality,urban ecological network is a key focus of current urban green space research.Jingzhou City of Hubei Province is taken as the research object.Relying on GIS technology platform,MSPA method is used to analyze the landscape pattern of Jingzhou City.On this basis,the landscape connectivity evaluation method is used to accurately identify and extract the source areas with important ecological value in Jingzhou City.Then,the normalization method and weighting method are combined to create a resistance factor evaluation system to construct the resistance surface.Based on the MCR model,the ecological network of Jingzhou City is successfully constructed,and targeted spatial optimization strategies and development suggestions are proposed.
基金National Natural Science Foundation of China,No.41601290。
文摘The middle reaches of the Yellow River represent an important area for the protection and development of the Yellow River Basin.Most of the area of the river basin is within the Loess Plateau,which establishes it as a fragile ecological environment.Firstly,using high-resolution data of land use in the watershed from the past 30 years,landscape ecological risk(LER)sample units are defined and an ecological risk index(ERI)model is constructed.Kriging interpolation is used to display the LER spatial patterns,and the temporal and spatial evolution of risk is examined.Secondly,the spatial evolution of land use landscape change(LULC)is analyzed,and the correlation between land use landscape and ecological risk is discussed.Finally,Based on the LER model,a risk-based minimum cumulative resistance(MCR)model is established,and a comprehensive protection and management network system for the ecological source-corridor-node system designed.The results suggest that in the past 30 years,LER has a high spatial correlation and areas with extremely high ecological risks are concentrated in northwest and southeast areas of the region,of which the northwest area accounts for the highest proportion.Risk intensity is closely related to the spatial pattern of land use landscape.ERI values of forestland,grasslands,and unused land and farmland are low,medium,and high,respectively.The trend of risk evolution is“overall improvement and partial deterioration”.Man-made construction and exploitation is the most direct reason for the increase of local ecological risks.The high ecological-risk areas in the northwest are dominated by deserts which reduce excessive interference by human activities on the natural landscape.Recommendations are:high-quality farmland should be protected;forestland should be restored and rebuilt;repair and adjust the existing ecosystem to assist in landscape regeneration and reconstruction;utilize the overall planning vision of“mountain,water,forest,field,lake,grass,sand”to design a management project at the basin scale;adhere to problem-oriented and precise policy implementation.
基金Under the auspices of National Natural Science Foundation of China(No.41861040,41761047)。
文摘As an important and typical arid inland region in China,Shiyang River Basin plays an important role in maintaining the sustainable development of eco-environment,whose ecological land suitability restricts the development of the local human activities.Therefore,Shiyang River Basin was selected as the case study,the minimum cumulative resistance(MCR)model and GIS technique were integrated to create land suitability evaluation map.We calculated the MCR value of ecological source and living source,and divided the whole basin into five partitions according to the difference between ecological source and living source,and analyzed the patterns and characteristics of the ecological land suitability evaluation(ELSE)regions,respectively.The results showed that:1)The suitable ecological land includes prohibited development region and restricted development region,which accounts for 15.45%and 23.35%of the total land area of the Shiyang River Basin,respectively.These two regions mainly distributed high altitude region in the southern Qilian Mountain and low altitude region where had high density of rivers.2)The protection of ecological land requires not only conserving existing ecological land but also focusing on ecological buffer belts around ecological sources and improving ecological land service ability.3)Ecological networks should be constructed through artificial planting trees around the boundary of oasis and ecological restoration region.Buffer greenbelts should also be established between optimized development region and ecological restoration region.