Based on the strong fluorescence and the highly thermal stability of sodium tris (pyridine dicarboxylato) europate (Na 3Eu(DPA) 3), polymethyl methacrylate (PMMA) composite material incorporated with the complex, P...Based on the strong fluorescence and the highly thermal stability of sodium tris (pyridine dicarboxylato) europate (Na 3Eu(DPA) 3), polymethyl methacrylate (PMMA) composite material incorporated with the complex, PMMA: Na 3Eu(DPA) 3, was prepared at 250 ℃. The fluorescence behavior of PMMA: Na 3Eu(DPA) 3 material was examined. The results show that the composite material keeps the luminescent characteristics of the Eu 3+ chelate after PMMA is incorporated with Na 3Eu(DPA) 3, and strong orange-red emission of the composite was observed. The fluorescence intensity of the composite material increases with the increase of the weight ratio of Na 3Eu(DPA) 3 to PMMA, but the relationship is not linear.展开更多
Fluorimetry has been used to characterize ionomers synthesized by copolymerization ofmethyl mehacrylate, methacrylic acid and europium methacrylate (EMA). Under excita-tion of UV light at 375 nm no seif-quenching was ...Fluorimetry has been used to characterize ionomers synthesized by copolymerization ofmethyl mehacrylate, methacrylic acid and europium methacrylate (EMA). Under excita-tion of UV light at 375 nm no seif-quenching was found in fluorescence of EMA containingionomers at 615nm within the concentration range of 1.6×10^(-2) to 11.49×10^(-2) mol%.This means that the distance between two Eu^(3+) ions is larger than 5nm. In the sameconcentration range seif-quenching took place in europium octanoate (EOA) containingpoly(methyl methacrylate) in which EOA was doped as an additive.展开更多
PMMA matrices were doped with nano-crystalline neodymium oxides synthesized by thermal decomposition process. X-ray diffraction and high-resolution transmission electron microscopy measurements were carried out to inv...PMMA matrices were doped with nano-crystalline neodymium oxides synthesized by thermal decomposition process. X-ray diffraction and high-resolution transmission electron microscopy measurements were carried out to investigate the structure, phase, and the morphology of the Nd_2O_3 nanocrystals and those embedded in the PMMA matrix. The average grain sizes were estimated 35 ± 6 nm and 46 ± 4 nm for non-annealed and annealed Nd_2O_3 particles, respectively. The grain size distributions(GSD) were calculated from the diffraction peaks of the annealed and non-annealed Nd_2O_3 powders and doped PMMA samples. The mass density, refractive index. UV-Visible absorption spectra were measured and the data were analyzed using the Judd-Ofelt approach to determine the oscillator strengths, the spontaneous emission probabilities and the branching ratios as a function of the nano-crystalline Nd_2O_3 content in the range of 0.1 wt.%-20 wt.% of MMA. Luminescence spectra upon 808 nm diode laser excitation were carried out in the wavelength range of 850-1550 nm at room temperature. The photoluminescence study has shown that the reasonably sharp emission peaks were observed upon heat treatment at 800 ℃ for 24 h for all concentrations of Nd_2O_3 nanopowders in PMMA. The infrared laser transition of Nd^(3+) ions at about 1.06 μm due to the ~4F_(3/2)→~4I_(11/2) transition was analyzed and discussed in Nd_2O_3 system for their possible applications in the photonic technology.展开更多
Ti_(3)C_(2)T_(x) nanosheets have attracted significant attention for their potential in electromagnetic wave absorption(EWA).However,their inherent self-stacking and exorbitant electrical conductivity inevitably lead ...Ti_(3)C_(2)T_(x) nanosheets have attracted significant attention for their potential in electromagnetic wave absorption(EWA).However,their inherent self-stacking and exorbitant electrical conductivity inevitably lead to serious impedance mismatch,restricting their EWA application.Therefore,the optimization of impedance matching becomes crucial.In this work,we developed polymethyl methacrylate(PMMA)@Ti_(3)C_(2)T_(x)@SiO_(2) composites with a sandwich-like core–shell structure by coating SiO_(2) on PMMA@Ti_(3)C_(2)T_(x).The results demonstrate that the superiority of the SiO_(2) layer in combination with PMMA@Ti_(3)C_(2)T_(x),outperforming other relative graded distribution structures and meeting the requirements of EWA equipment.The resulting PMMA@Ti_(3)C_(2)T_(x)@SiO_(2) composites achieved a minimum reflection loss of-58.08 dB with a thickness of 1.9 mm,and an effective absorption bandwidth of 2.88 GHz.Mechanism analysis revealed that the structural design of SiO_(2) layer not only optimized impedance matching,but also synergistically enhanced multiple loss mechanisms such as interfacial polarization and dipolar polarization.Therefore,this work provides valuable insights for the future preparation of high-performance electromagnetic wave absorbing Ti_(3)C_(2)T_(x)-based composites.展开更多
文摘Based on the strong fluorescence and the highly thermal stability of sodium tris (pyridine dicarboxylato) europate (Na 3Eu(DPA) 3), polymethyl methacrylate (PMMA) composite material incorporated with the complex, PMMA: Na 3Eu(DPA) 3, was prepared at 250 ℃. The fluorescence behavior of PMMA: Na 3Eu(DPA) 3 material was examined. The results show that the composite material keeps the luminescent characteristics of the Eu 3+ chelate after PMMA is incorporated with Na 3Eu(DPA) 3, and strong orange-red emission of the composite was observed. The fluorescence intensity of the composite material increases with the increase of the weight ratio of Na 3Eu(DPA) 3 to PMMA, but the relationship is not linear.
基金This work was supported by the National National Science Foundation of China
文摘Fluorimetry has been used to characterize ionomers synthesized by copolymerization ofmethyl mehacrylate, methacrylic acid and europium methacrylate (EMA). Under excita-tion of UV light at 375 nm no seif-quenching was found in fluorescence of EMA containingionomers at 615nm within the concentration range of 1.6×10^(-2) to 11.49×10^(-2) mol%.This means that the distance between two Eu^(3+) ions is larger than 5nm. In the sameconcentration range seif-quenching took place in europium octanoate (EOA) containingpoly(methyl methacrylate) in which EOA was doped as an additive.
基金Project supported by Istanbul Technical University Scientific Research Projects Department(ITU BAP,project number 39283)
文摘PMMA matrices were doped with nano-crystalline neodymium oxides synthesized by thermal decomposition process. X-ray diffraction and high-resolution transmission electron microscopy measurements were carried out to investigate the structure, phase, and the morphology of the Nd_2O_3 nanocrystals and those embedded in the PMMA matrix. The average grain sizes were estimated 35 ± 6 nm and 46 ± 4 nm for non-annealed and annealed Nd_2O_3 particles, respectively. The grain size distributions(GSD) were calculated from the diffraction peaks of the annealed and non-annealed Nd_2O_3 powders and doped PMMA samples. The mass density, refractive index. UV-Visible absorption spectra were measured and the data were analyzed using the Judd-Ofelt approach to determine the oscillator strengths, the spontaneous emission probabilities and the branching ratios as a function of the nano-crystalline Nd_2O_3 content in the range of 0.1 wt.%-20 wt.% of MMA. Luminescence spectra upon 808 nm diode laser excitation were carried out in the wavelength range of 850-1550 nm at room temperature. The photoluminescence study has shown that the reasonably sharp emission peaks were observed upon heat treatment at 800 ℃ for 24 h for all concentrations of Nd_2O_3 nanopowders in PMMA. The infrared laser transition of Nd^(3+) ions at about 1.06 μm due to the ~4F_(3/2)→~4I_(11/2) transition was analyzed and discussed in Nd_2O_3 system for their possible applications in the photonic technology.
基金supported by the National Natural Science Foundation of China(No.U2004177)Henan Province Key Research Project for Higher Education Institutions(No.23B430017)+1 种基金the Outstanding Youth Fund of Henan Province(No.212300410081)the Science and Technology Innovation Talents in Universities of Henan Province(No.22HASTIT001).
文摘Ti_(3)C_(2)T_(x) nanosheets have attracted significant attention for their potential in electromagnetic wave absorption(EWA).However,their inherent self-stacking and exorbitant electrical conductivity inevitably lead to serious impedance mismatch,restricting their EWA application.Therefore,the optimization of impedance matching becomes crucial.In this work,we developed polymethyl methacrylate(PMMA)@Ti_(3)C_(2)T_(x)@SiO_(2) composites with a sandwich-like core–shell structure by coating SiO_(2) on PMMA@Ti_(3)C_(2)T_(x).The results demonstrate that the superiority of the SiO_(2) layer in combination with PMMA@Ti_(3)C_(2)T_(x),outperforming other relative graded distribution structures and meeting the requirements of EWA equipment.The resulting PMMA@Ti_(3)C_(2)T_(x)@SiO_(2) composites achieved a minimum reflection loss of-58.08 dB with a thickness of 1.9 mm,and an effective absorption bandwidth of 2.88 GHz.Mechanism analysis revealed that the structural design of SiO_(2) layer not only optimized impedance matching,but also synergistically enhanced multiple loss mechanisms such as interfacial polarization and dipolar polarization.Therefore,this work provides valuable insights for the future preparation of high-performance electromagnetic wave absorbing Ti_(3)C_(2)T_(x)-based composites.