多服务移动边缘计算(multiple-services mobile edge computing,MSs-MEC)能根据需求自适应调整服务缓存决策,使得部署在用户侧的边缘服务器能够灵活处理不同服务类型的任务。但在实际应用中,特定类型任务的成功迁移依赖于服务环境的提...多服务移动边缘计算(multiple-services mobile edge computing,MSs-MEC)能根据需求自适应调整服务缓存决策,使得部署在用户侧的边缘服务器能够灵活处理不同服务类型的任务。但在实际应用中,特定类型任务的成功迁移依赖于服务环境的提前安装。此外,同时进行任务迁移和服务缓存可能会因时间冲突而导致计算延时。因此,针对上述相关问题,首先将任务迁移和服务缓存决策进行解耦,针对深度强化学习(deep reinforcement learning,DRL)在具有高维的混合决策空间的性能提升不明显的缺点(例如资源分配时利用率不高),将DRL与Transformer结合,通过在历史数据中学习,输出当前时隙的任务迁移决策和下一时隙的任务决策,保证任务到达边缘服务器时能立即执行。其次,为了提高资源分配问题中的资源利用率,将问题分解为连续资源分配问题和离散的任务迁移与服务缓存问题,利用凸优化技术求解资源分配最优决策。广泛的数值结果表明,与其他基线算法相比,提出的算法能有效地减少任务的平均完成时延,同时在资源利用率和稳定性方面也有优异的表现。展开更多
Haptic is the modality that complements traditional multimedia,i.e.,audiovisual,to evolve the next wave of innovation at which the Internet data stream can be exchanged to enable remote skills and control applications...Haptic is the modality that complements traditional multimedia,i.e.,audiovisual,to evolve the next wave of innovation at which the Internet data stream can be exchanged to enable remote skills and control applications.This will require ultra-low latency and ultra-high reliability to evolve the mobile experience into the era of Digital Twin and Tactile Internet.While the 5th generation of mobile networks is not yet widely deployed,Long-Term Evolution(LTE-A)latency remains much higher than the 1 ms requirement for the Tactile Internet and therefore the Digital Twin.This work investigates an interesting solution based on the incorporation of Software-defined networking(SDN)and Multi-access Mobile Edge Computing(MEC)technologies in an LTE-A network,to deliver future multimedia applications over the Tactile Internet while overcoming the QoS challenges.Several network scenarios were designed and simulated using Riverbed modeler and the performance was evaluated using several time-related Key Performance Indicators(KPIs)such as throughput,End-2-End(E2E)delay,and jitter.The best scenario possible is clearly the one integrating MEC and SDN approaches,where the overall delay,jitter,and throughput for haptics-attained 2 ms,0.01 ms,and 1000 packets per second.The results obtained give clear evidence that the integration of,both SDN and MEC,in LTE-A indicates performance improvement,and fulfills the standard requirements in terms of the above KPIs,for realizing a Digital Twin/Tactile Internet-based system.展开更多
文摘Haptic is the modality that complements traditional multimedia,i.e.,audiovisual,to evolve the next wave of innovation at which the Internet data stream can be exchanged to enable remote skills and control applications.This will require ultra-low latency and ultra-high reliability to evolve the mobile experience into the era of Digital Twin and Tactile Internet.While the 5th generation of mobile networks is not yet widely deployed,Long-Term Evolution(LTE-A)latency remains much higher than the 1 ms requirement for the Tactile Internet and therefore the Digital Twin.This work investigates an interesting solution based on the incorporation of Software-defined networking(SDN)and Multi-access Mobile Edge Computing(MEC)technologies in an LTE-A network,to deliver future multimedia applications over the Tactile Internet while overcoming the QoS challenges.Several network scenarios were designed and simulated using Riverbed modeler and the performance was evaluated using several time-related Key Performance Indicators(KPIs)such as throughput,End-2-End(E2E)delay,and jitter.The best scenario possible is clearly the one integrating MEC and SDN approaches,where the overall delay,jitter,and throughput for haptics-attained 2 ms,0.01 ms,and 1000 packets per second.The results obtained give clear evidence that the integration of,both SDN and MEC,in LTE-A indicates performance improvement,and fulfills the standard requirements in terms of the above KPIs,for realizing a Digital Twin/Tactile Internet-based system.