The purpose of this article is to study the rational evaluation of European options price when the underlying price process is described by a time-change Levy process. European option pricing formula is obtained under...The purpose of this article is to study the rational evaluation of European options price when the underlying price process is described by a time-change Levy process. European option pricing formula is obtained under the minimal entropy martingale measure (MEMM) and applied to several examples of particular time-change Levy processes. It can be seen that the framework in this paper encompasses the Black-Scholes model and almost all of the models proposed in the subordinated market.展开更多
In this paper, we consider a Markov switching Lévy process model in which the underlying risky assets are driven by the stochastic exponential of Markov switching Lévy process and then apply the model to opt...In this paper, we consider a Markov switching Lévy process model in which the underlying risky assets are driven by the stochastic exponential of Markov switching Lévy process and then apply the model to option pricing and hedging. In this model, the market interest rate, the volatility of the underlying risky assets and the N-state compensator,depend on unobservable states of the economy which are modeled by a continuous-time Hidden Markov process. We use the MEMM(minimal entropy martingale measure) as the equivalent martingale measure. The option price using this model is obtained by the Fourier transform method. We obtain a closed-form solution for the hedge ratio by applying the local risk minimizing hedging.展开更多
文摘The purpose of this article is to study the rational evaluation of European options price when the underlying price process is described by a time-change Levy process. European option pricing formula is obtained under the minimal entropy martingale measure (MEMM) and applied to several examples of particular time-change Levy processes. It can be seen that the framework in this paper encompasses the Black-Scholes model and almost all of the models proposed in the subordinated market.
基金Supported by the National Natural Science Foundation of China(11201221)Supported by the Natural Science Foundation of Jiangsu Province(BK2012468)
文摘In this paper, we consider a Markov switching Lévy process model in which the underlying risky assets are driven by the stochastic exponential of Markov switching Lévy process and then apply the model to option pricing and hedging. In this model, the market interest rate, the volatility of the underlying risky assets and the N-state compensator,depend on unobservable states of the economy which are modeled by a continuous-time Hidden Markov process. We use the MEMM(minimal entropy martingale measure) as the equivalent martingale measure. The option price using this model is obtained by the Fourier transform method. We obtain a closed-form solution for the hedge ratio by applying the local risk minimizing hedging.