期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Suitable triggering algorithms for detecting strong ground motions using MEMS accelerometers 被引量:1
1
作者 Ravi Sankar Jakka Siddharth Garg 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期27-35,共9页
With the recent development of digital Micro Electro Mechanical System (MEMS) sensors, the cost of monitoring and detecting seismic events in real time can be greatly reduced. Ability of MEMS accelerograph to record... With the recent development of digital Micro Electro Mechanical System (MEMS) sensors, the cost of monitoring and detecting seismic events in real time can be greatly reduced. Ability of MEMS accelerograph to record a seismic event depends upon the efficiency of triggering algorithm, apart from the sensor's sensitivity. There are several classic triggering algorithms developed to detect seismic events, ranging from basic amplitude threshold to more sophisticated pattern recognition. Algorithms based on STA/LTA are reported to be computationally efficient for real time monitoring. In this paper, we analyzed several STA/LTA algorithms to check their efficiency and suitability using data obtained from the Quake Catcher Network (network of MEMS accelerometer stations). We found that most of the STA/LTA algorithms are suitable for use with MEMS accelerometer data to accurately detect seismic events. However, the efficiency of any particular algorithm is found to be dependent on the parameter set used (i.e., window width of STA, LTA and threshold level). 展开更多
关键词 strong ground motion triggering algorithms seismic event detection mems accelerometers STA/LTA based algorithms
下载PDF
Noise behaviors of a closed-loop micro-electromechanical system capacitive accelerometer
2
作者 马铭骏 金仲和 +1 位作者 刘义冬 马铁英 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4634-4644,共11页
The noise of closed loop micro-electromechanical systems(MEMS) capacitive accelerometer is treated as one of the significant performance specifications.Traditional optimization of noise performance often focuses on de... The noise of closed loop micro-electromechanical systems(MEMS) capacitive accelerometer is treated as one of the significant performance specifications.Traditional optimization of noise performance often focuses on designing large capacitive sensitivity accelerometer and applying closed loop structure to shape total noise,but different noise sources in closed loop and their behaviors at low frequencies are seldom carefully studied,especially their behaviors with different electronic parameters.In this work,a thorough noise analysis is established focusing on the four noise sources transfer functions near 0 Hz with simplified electronic parameters in closed loop,and it is found that the total electronic noise equivalent acceleration varies differently at different frequency points,such that the noise spectrum shape at low frequencies can be altered from 1/f noise-like shape to flat spectrum shape.The bias instability changes as a consequence.With appropriate parameters settings,the 670 Hz resonant frequency accelerometer can reach resolution of 2.6 μg/(Hz)1/2 at 2 Hz and 6 μg bias instability,and 1300 Hz accelerometer can achieve 5μg/(Hz)1/2 at 2 Hz and 31 μg bias instability.Both accelerometers have flat spectrum profile from 2 Hz to 15 Hz. 展开更多
关键词 CLOSED-LOOP mems accelerometer noise spectrum shape electronic parameters bias instability
下载PDF
Temperature Bias Drift Phase-Based Compensation for a MEMS Accelerometer with Stiffness-Tuning Double-Sided Parallel Plate Capacitors
3
作者 Mingkang Li Zhipeng Ma +4 位作者 Tengfei Zhang Yiming Jin Ziyi Ye Xudong Zheng Zhonghe Jin 《Nanomanufacturing and Metrology》 EI 2023年第3期29-40,共12页
This paper reports an approach of in-operation temperature bias drift compensation based on phase-based calibration for a stiffness-tunable MEMS accelerometer with double-sided parallel plate(DSPP)capacitors.The tempe... This paper reports an approach of in-operation temperature bias drift compensation based on phase-based calibration for a stiffness-tunable MEMS accelerometer with double-sided parallel plate(DSPP)capacitors.The temperature drifts of the components of the accelerometer are characterized,and analytical models are built on the basis of the measured drift results.Results reveal that the temperature drift of the acceleration output bias is dominated by the sensitive mechanical stiffness.An out-of-bandwidth AC stimulus signal is introduced to excite the accelerometer,and the interference with the acceleration measurement is minimized.The demodulated phase of the excited response exhibits a monotonic relationship with the effective stiffness of the accelerometer.Through the proposed online compensation approach,the temperature drift of the effective stiffness can be detected by the demodulated phase and compensated in real time by adjusting the stiffness-tuning voltage of DSPP capacitors.The temperature drift coefficient(TDC)of the accelerometer is reduced from 0.54 to 0.29 mg/℃,and the Allan variance bias instability of about 2.8μg is not adversely affected.Meanwhile,the pull-in resulting from the temperature drift of the effective stiffness can be prevented.TDC can be further reduced to 0.04 mg/℃through an additional offline calibration based on the demodulated carrier phase representing the temperature drift of the readout circuit. 展开更多
关键词 mems accelerometer Stiffness tuning Double-sided parallel plates Temperature drift compensation
原文传递
116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer
4
作者 龙善丽 刘艳 +2 位作者 贺克军 唐兴刚 陈钱 《Journal of Semiconductors》 EI CAS CSCD 2014年第9期117-121,共5页
A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noi... A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noise low-offset charge integrator is employed in this circuit to implement a capacitance-to-voltage converter and minimize the noise and offset. The application-specific integrated circuit (ASIC) is fabricated in a 0.5 /μm one-ploy three-metal CMOS process. The measured results of the proposed circuit show that the noise floor of the ASIC is -116 dBV, the sensitivity of the accelerometer is 66 mV/g with a nonlinearity of 0.5%. The chip occupies 3.5×2.5 mm2 and the current is 3.5 mA. 展开更多
关键词 in-circuit reprogrammable technique mems accelerometer modulation and demodulation sensitiv-ity of accelerometer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部