By making the analogy between the operator Hamiltonians of a mesoscopic ring carrying the persistent current and a Josephson junction we have introduced a phase operator and entangled state representation to establish...By making the analogy between the operator Hamiltonians of a mesoscopic ring carrying the persistent current and a Josephson junction we have introduced a phase operator and entangled state representation to establish a theoretical formalism for the ring system.展开更多
The persistent current and transmission of two connected Aharonov-Bohm rings coupled to external leads are solved analytically. The conditions on which we may observe persistent current, zero or perfect transmission a...The persistent current and transmission of two connected Aharonov-Bohm rings coupled to external leads are solved analytically. The conditions on which we may observe persistent current, zero or perfect transmission as well as Fano resonance are studied.展开更多
A new non-perturbative method is used to discuss the persistent current in a one-dimensional mesoscopic ring threaded by a flux φ with electron-phonon interaction in the lattice model. The current is periodic in φ w...A new non-perturbative method is used to discuss the persistent current in a one-dimensional mesoscopic ring threaded by a flux φ with electron-phonon interaction in the lattice model. The current is periodic in φ with a flux quantum φ 0 and the electron-phonon interaction suppresses the persistent current. By considering the contributions of many-phonon correlations, we could obtain more accurate results.展开更多
Aharonov-Casher oscillasions of transmission through a mesoscopic ring with a magnetic impurity is investigated. Both spin-dependent transmission and reflection coefficients of spin-state electrons at zero-temperature...Aharonov-Casher oscillasions of transmission through a mesoscopic ring with a magnetic impurity is investigated. Both spin-dependent transmission and reflection coefficients of spin-state electrons at zero-temperature are calculated as a function of the textured electric fields and its title angle in the present of spin-flipper scattering. It is found that the spin-exchange interaction can destroy intermittently periodic oscillations of spin-up transmission and reflection coefficients within some small ranges in the adiabatic region of quantum phase. However spin-down transmission and reflection coefficients appear periodic AC oscillations. The calculated results manifest that spindown transmission and reflection coefficients have the same perfect oscillation patterns. In the nonadiabatic region, the behavior of the anomalous AC oscillations are depedent on the difference between the tilt angle of spin and that of texture electric field.展开更多
The influence of electron-phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin-orbit (SO) interaction is numerically investigated. There are three leads connecting ...The influence of electron-phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin-orbit (SO) interaction is numerically investigated. There are three leads connecting to the ring at different positionsl unpolarized current is injected to one of them, and the other two are output channels with different bias voltages. The spin polarization of current in the outgoing leads shows oscillations as a function of EP coupling strength owing to the quantum interference of EP states in the ring region. As temperature increases, the oscillations are evidently suppressed, implying decoherence of the EP states. The simulation shows that the magnitude of polarized current is sensitive to the location of the lead. The polarized current depends on the connecting position of the lead in a complicated way due to the spin-sensitive quantum interference effects caused by different phases accumulated by transmitting electrons with opposite spin states along different paths.展开更多
The charge distribution in thin mesoscopic superconducting ring is studied by the phenomenological GinzburgLandau theory. In the giant vortex states we find that the mesoscopic rings may present three kinds of charge ...The charge distribution in thin mesoscopic superconducting ring is studied by the phenomenological GinzburgLandau theory. In the giant vortex states we find that the mesoscopic rings may present three kinds of charge distribution while the disk only owns the first two kinds. The charge near the inner radius may change its sign from negative to positive with increasing applied field. In the multivortex state we find that there exist saddle-point states and stable multivortex states. The distribution of charge and the superconducting electron density in the (0:2) saddle states and the (0:4), and (1:5) stable multivortex states has also been studied. The contour plot of the charge distribution and the Cooper pair density distribution are given.展开更多
We theoretically investigate the Kondo effect of a three-terminal transport quantum dot (QD) embedded in an Aharonov-Bohm ring in the Kondo regime by means of the one-impurity Anderson Hamiltonian. The Hamiltonian i...We theoretically investigate the Kondo effect of a three-terminal transport quantum dot (QD) embedded in an Aharonov-Bohm ring in the Kondo regime by means of the one-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We find that in this system, the Kondo effect depends sensitively oil the parity and size of the ring; the Kondo screening cloud can be tuned by tuning the coupling strength of the reservoir-dot. Thus this model might be a candidate for future device applications.展开更多
Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we investigate Fano versus Kondo resonances in a closed Aharonov-Bohm interferometer coupled to ferromagnetic leads and study their eff...Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we investigate Fano versus Kondo resonances in a closed Aharonov-Bohm interferometer coupled to ferromagnetic leads and study their effects on the conductance of this system. The conductance with both parallel and antiparallel lead-polarization alignments is analysed for various values of the magnetic flux. Our results show that this system can provide an excellent spin filtering property, and a large tunnelling magnetoresistance can arise by adjusting the system parameters, which indicates that this system is a possible candidate for spin valve transistors and has important applications in spintronics.展开更多
Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we have qualitatively studied the spin-dependent transport of a triple-QD system in the Kondo regime. It is shown that the Kondo resona...Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we have qualitatively studied the spin-dependent transport of a triple-QD system in the Kondo regime. It is shown that the Kondo resonance and Fang interference coexist, and in this system the Fang Kondo effect shows dip behaviours richer than that in the T-shaped QDs. The interdot coupling, the energy level of the side coupled QDs and the spin polarization strength greatly influence the DOS of the central quantum dot QDo. Either the increase of the coupling strength between the two QDs or that of the energy levels of the side coupled QDs enhances the Kondo resonance. Especially, the Kondo resonance is strengthened greatly when the side dot energy is fixed at the Fermi energy. Meanwhile, the Kondo resonance splits for the spin-up and spin-down configurations due to the polarization: the down-spin resonance is enhanced, and the up-spin resonance is suppressed.展开更多
We investigate the spin-flip process through double quantum dots coupled to two ferromagnetic leads in series. By means of the slave-boson mean-field approximation, we calculate the density of states in the Kondo regi...We investigate the spin-flip process through double quantum dots coupled to two ferromagnetic leads in series. By means of the slave-boson mean-field approximation, we calculate the density of states in the Kondo regime for two different configurations of the leads. It is found that transport shows some remarkable properties depending on the spin-flip strength. These effects may be useful in exploiting the role of electronic correlation in spintronics.展开更多
We theoretically investigate the spin-polarized transport properties of the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-...We theoretically investigate the spin-polarized transport properties of the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We calculate the density of states and the liner conductance in this system with both parallel and antiparallel lead-polarization alignments, and our results show that the transport properties of this system depend on both the tunnelling strength between the two dots and the spin-polarized strength p. This system is a possible candidate for spin valve transistors in the spintronics.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10574060 and the Ph,D Tutoring Foundation of Educational Ministry of China
文摘By making the analogy between the operator Hamiltonians of a mesoscopic ring carrying the persistent current and a Josephson junction we have introduced a phase operator and entangled state representation to establish a theoretical formalism for the ring system.
文摘The persistent current and transmission of two connected Aharonov-Bohm rings coupled to external leads are solved analytically. The conditions on which we may observe persistent current, zero or perfect transmission as well as Fano resonance are studied.
文摘A new non-perturbative method is used to discuss the persistent current in a one-dimensional mesoscopic ring threaded by a flux φ with electron-phonon interaction in the lattice model. The current is periodic in φ with a flux quantum φ 0 and the electron-phonon interaction suppresses the persistent current. By considering the contributions of many-phonon correlations, we could obtain more accurate results.
文摘Aharonov-Casher oscillasions of transmission through a mesoscopic ring with a magnetic impurity is investigated. Both spin-dependent transmission and reflection coefficients of spin-state electrons at zero-temperature are calculated as a function of the textured electric fields and its title angle in the present of spin-flipper scattering. It is found that the spin-exchange interaction can destroy intermittently periodic oscillations of spin-up transmission and reflection coefficients within some small ranges in the adiabatic region of quantum phase. However spin-down transmission and reflection coefficients appear periodic AC oscillations. The calculated results manifest that spindown transmission and reflection coefficients have the same perfect oscillation patterns. In the nonadiabatic region, the behavior of the anomalous AC oscillations are depedent on the difference between the tilt angle of spin and that of texture electric field.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474033 and 60676056)the State Key Projects of Basic Research of China (Grant Nos 2006CB0L1000 and 2005CB623605)
文摘The influence of electron-phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin-orbit (SO) interaction is numerically investigated. There are three leads connecting to the ring at different positionsl unpolarized current is injected to one of them, and the other two are output channels with different bias voltages. The spin polarization of current in the outgoing leads shows oscillations as a function of EP coupling strength owing to the quantum interference of EP states in the ring region. As temperature increases, the oscillations are evidently suppressed, implying decoherence of the EP states. The simulation shows that the magnitude of polarized current is sensitive to the location of the lead. The polarized current depends on the connecting position of the lead in a complicated way due to the spin-sensitive quantum interference effects caused by different phases accumulated by transmitting electrons with opposite spin states along different paths.
基金supported by the National Natural Science Foundation of China (Grant No.60371033)
文摘The charge distribution in thin mesoscopic superconducting ring is studied by the phenomenological GinzburgLandau theory. In the giant vortex states we find that the mesoscopic rings may present three kinds of charge distribution while the disk only owns the first two kinds. The charge near the inner radius may change its sign from negative to positive with increasing applied field. In the multivortex state we find that there exist saddle-point states and stable multivortex states. The distribution of charge and the superconducting electron density in the (0:2) saddle states and the (0:4), and (1:5) stable multivortex states has also been studied. The contour plot of the charge distribution and the Cooper pair density distribution are given.
基金Supported by the Funds for Major Basic Research Project of Sichuan Province under Grant No 02GY029-188, and the Natural Science Foundation of the Committee of Education of Sichuan Province under Grant No 2003 A078.
文摘We theoretically investigate the Kondo effect of a three-terminal transport quantum dot (QD) embedded in an Aharonov-Bohm ring in the Kondo regime by means of the one-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We find that in this system, the Kondo effect depends sensitively oil the parity and size of the ring; the Kondo screening cloud can be tuned by tuning the coupling strength of the reservoir-dot. Thus this model might be a candidate for future device applications.
文摘Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we investigate Fano versus Kondo resonances in a closed Aharonov-Bohm interferometer coupled to ferromagnetic leads and study their effects on the conductance of this system. The conductance with both parallel and antiparallel lead-polarization alignments is analysed for various values of the magnetic flux. Our results show that this system can provide an excellent spin filtering property, and a large tunnelling magnetoresistance can arise by adjusting the system parameters, which indicates that this system is a possible candidate for spin valve transistors and has important applications in spintronics.
文摘Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we have qualitatively studied the spin-dependent transport of a triple-QD system in the Kondo regime. It is shown that the Kondo resonance and Fang interference coexist, and in this system the Fang Kondo effect shows dip behaviours richer than that in the T-shaped QDs. The interdot coupling, the energy level of the side coupled QDs and the spin polarization strength greatly influence the DOS of the central quantum dot QDo. Either the increase of the coupling strength between the two QDs or that of the energy levels of the side coupled QDs enhances the Kondo resonance. Especially, the Kondo resonance is strengthened greatly when the side dot energy is fixed at the Fermi energy. Meanwhile, the Kondo resonance splits for the spin-up and spin-down configurations due to the polarization: the down-spin resonance is enhanced, and the up-spin resonance is suppressed.
基金Supported by the Funds for Major Basic Research Project of Sichuan Province under Grant No 02GY029-188, and the Natural Science Foundation of the Committee of Education of Sichuan Province under Grant No 2003A078.
文摘We investigate the spin-flip process through double quantum dots coupled to two ferromagnetic leads in series. By means of the slave-boson mean-field approximation, we calculate the density of states in the Kondo regime for two different configurations of the leads. It is found that transport shows some remarkable properties depending on the spin-flip strength. These effects may be useful in exploiting the role of electronic correlation in spintronics.
文摘We theoretically investigate the spin-polarized transport properties of the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We calculate the density of states and the liner conductance in this system with both parallel and antiparallel lead-polarization alignments, and our results show that the transport properties of this system depend on both the tunnelling strength between the two dots and the spin-polarized strength p. This system is a possible candidate for spin valve transistors in the spintronics.