期刊文献+
共找到552篇文章
< 1 2 28 >
每页显示 20 50 100
Nonreciprocal thermal metamaterials:Methods and applications
1
作者 Zhengjiao Xu Chuanbao Liu +2 位作者 Xueqian Wang Yongliang Li Yang Bai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1678-1693,共16页
Nonreciprocity of thermal metamaterials has significant application prospects in isolation protection,unidirectional transmission,and energy harvesting.However,due to the inherent isotropic diffusion law of heat flow,... Nonreciprocity of thermal metamaterials has significant application prospects in isolation protection,unidirectional transmission,and energy harvesting.However,due to the inherent isotropic diffusion law of heat flow,it is extremely difficult to achieve nonreciprocity of heat transfer.This review presents the recent developments in thermal nonreciprocity and explores the fundamental theories,which underpin the design of nonreciprocal thermal metamaterials,i.e.,the Onsager reciprocity theorem.Next,three methods for achieving nonreciprocal metamaterials in the thermal field are elucidated,namely,nonlinearity,spatiotemporal modulation,and angular momentum bias,and the applications of nonreciprocal thermal metamaterials are outlined.We also discuss nonreciprocal thermal radiation.Moreover,the potential applications of nonreciprocity to other Laplacian physical fields are discussed.Finally,the prospects for advancing nonreciprocal thermal metamaterials are highlighted,including developments in device design and manufacturing techniques and machine learning-assisted material design. 展开更多
关键词 thermal metamaterials NONRECIPROCITY NONLINEARITY spatiotemporal modulation
下载PDF
Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
2
作者 Rui Zhao Jian Zheng +4 位作者 Jin Guo Yunbo Shi Hengzhen Feng Jun Tang Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期217-224,共8页
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr... In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment. 展开更多
关键词 Star-shaped metamaterials BROADBAND Vibration attenuation Low-frequency ultrasound vibration Transmission loss
下载PDF
Mechanical and damping performances of TPMS lattice metamaterials fabricated by laser powder bed fusion
3
作者 Yan-peng Wei Huai-qian Li +7 位作者 Jing-jing Han Ying-chun Ma Hao-ran Zhou Jing-chang Cheng Jian Shi Zhi-quan Miao Bo Yu Feng Lin 《China Foundry》 SCIE EI CAS CSCD 2024年第4期327-333,共7页
Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,it... Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity. 展开更多
关键词 lattice metamaterials TPMS energy absorption DAMPING laser powder bed fusion
下载PDF
General three-dimensional thermal illusion metamaterials
4
作者 刘天丰 王兆宸 +1 位作者 朱展 胡润 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期41-47,共7页
Thermal illusion aims to create fake thermal signals or hide the thermal target from the background thermal field to mislead infrared observers,and illusion thermotics was proposed to regulate heat flux with artificia... Thermal illusion aims to create fake thermal signals or hide the thermal target from the background thermal field to mislead infrared observers,and illusion thermotics was proposed to regulate heat flux with artificially structured metamaterials for thermal illusion.Most theoretical and experimental works on illusion thermotics focus on two-dimensional materials,while heat transfer in real three-dimensional(3D)objects remains elusive,so the general 3D illusion thermotics is urgently demanded.In this study,we propose a general method to design 3D thermal illusion metamaterials with varying illusions at different sizes and positions.To validate the generality of the 3D method for thermal illusion metamaterials,we realize thermal functionalities of thermal shifting,splitting,trapping,amplifying and compressing.In addition,we propose a special way to simplify the design method under the condition that the size of illusion target is equal to the size of original heat source.The 3D thermal illusion metamaterial paves a general way for illusion thermotics and triggers the exploration of illusion metamaterials for more functionalities and applications. 展开更多
关键词 thermal illusion thermal metamaterials transformation thermotics
下载PDF
The design, manufacture and application of multistable mechanical metamaterials-a state-of-the-art review 被引量:1
5
作者 Rui Xu Chuanqing Chen +4 位作者 Jiapeng Sun Yulong He Xin Li Ming-Hui Lu Yanfeng Chen 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期416-452,共37页
Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These meta... Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials. 展开更多
关键词 multistable mechanical metamaterials bistable units mechanical properties design and manufacture
下载PDF
Machine learning-based stiffness optimization of digital composite metamaterials with desired positive or negative Poisson's ratio
6
作者 Xihang Jiang Fan Liu Lifeng Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第6期424-431,共8页
Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness ... Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures.In this work,a convolutional neural network(CNN)based self-learning multi-objective optimization is performed to design digital composite materials.The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials,along with their corresponding Poisson's ratios and stiffness values.Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint.Furthermore,we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio(negative,zero,or positive).The optimized designs have been successfully and efficiently obtained,and their validity has been confirmed through finite element analysis results.This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization. 展开更多
关键词 Digital composite materials metamaterials Machine learning Convolutional neural network(CNN) Poisson's ratio STIFFNESS
下载PDF
Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
7
作者 李澔翔 谭杨 +1 位作者 杨京 梁彬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期282-292,共11页
Transformation acoustics(TA)has emerged as a powerful tool for designing several intriguing conceptual devices,which can manipulate acoustic waves in a flexible manner,yet their applications are limited in Hermitian m... Transformation acoustics(TA)has emerged as a powerful tool for designing several intriguing conceptual devices,which can manipulate acoustic waves in a flexible manner,yet their applications are limited in Hermitian materials.In this work,we propose the theory of complex-coordinate transformation acoustics(CCTA)and verify the effectiveness in realizing acoustic non-Hermitian metamaterials.Especially,we apply this theory for the first time to the design of acoustic parity-time(PT)and antisymmetric parity-time(APT)metamaterials and demonstrate two distinctive examples.First,we use this method to obtain the exceptional points(EPs)of the PT/APT system and observe the spontaneous phase transition of the scattering matrix in the transformation parameter space.Second,by selecting the Jacobian matrix's constitutive parameters,the PT/APT-symmetric system can also be configured to approach the zero and pole of the scattering matrix,behaving as an acoustic coherent perfect absorber and equivalent laser.We envision our proposed CCTAbased paradigm to open the way for exploring the non-Hermitian physics and finding application in the design of acoustic functional devices such as absorbers and amplifiers whose material parameters are hard to realize by using the conventional transformation method. 展开更多
关键词 complex-coordinate transformation acoustics acoustic non-Hermitian metamaterials exceptional points acoustic coherent perfect absorber and equivalent laser
下载PDF
Active Truss Metamaterials: Modelling and Tuning of Band Gaps
8
作者 Daniel Calegaro Stefano Mariani 《Journal of Materials Science and Chemical Engineering》 2023年第8期127-134,共8页
Periodic composite structures, like acoustic metamaterials (AMMs) and phononic crystals (PCs), are able to prevent the propagation of sound and elastic waves for some specific frequency ranges, leading to the emergenc... Periodic composite structures, like acoustic metamaterials (AMMs) and phononic crystals (PCs), are able to prevent the propagation of sound and elastic waves for some specific frequency ranges, leading to the emergence of so-called band gaps. So far, the optimization of the metamaterial properties and therefore of the band gaps has been typically performed on passive PCs and AMMs. Hence, the band gap properties cannot be tuned anymore after the production process of the metamaterials;this problem can be overcome thanks to the use of active materials. In this work, material and geometric nonlinearities are exploited to actively tune the frequency ranges of the band gaps of an architected AMM characterized by a three-dimensional periodicity. Specifically, a hyperelastic piezoelectric composite, that can be obtained by embedding piezo nanoparticles in a soft polymeric matrix, is considered to assess the effects of the nonlinearities on the behavior of sculptured microstructures, taking advantage of instability-induced pattern transformation and piezoelectricity to actively tune the band gaps. . 展开更多
关键词 Acoustic metamaterials HYPERELASTICITY MULTI-PHYSICS PIEZOELECTRICITY BUCKLING
下载PDF
Active Truss Metamaterials: Modelling and Tuning of Band Gaps
9
作者 Daniel Calegaro Stefano Mariani 《Journal of Modern Physics》 2023年第8期127-134,共12页
Periodic composite structures, like acoustic metamaterials (AMMs) and phononic crystals (PCs), are able to prevent the propagation of sound and elastic waves for some specific frequency ranges, leading to the emergenc... Periodic composite structures, like acoustic metamaterials (AMMs) and phononic crystals (PCs), are able to prevent the propagation of sound and elastic waves for some specific frequency ranges, leading to the emergence of so-called band gaps. So far, the optimization of the metamaterial properties and therefore of the band gaps has been typically performed on passive PCs and AMMs. Hence, the band gap properties cannot be tuned anymore after the production process of the metamaterials;this problem can be overcome thanks to the use of active materials. In this work, material and geometric nonlinearities are exploited to actively tune the frequency ranges of the band gaps of an architected AMM characterized by a three-dimensional periodicity. Specifically, a hyperelastic piezoelectric composite, that can be obtained by embedding piezo nanoparticles in a soft polymeric matrix, is considered to assess the effects of the nonlinearities on the behavior of sculptured microstructures, taking advantage of instability-induced pattern transformation and piezoelectricity to actively tune the band gaps. . 展开更多
关键词 Acoustic metamaterials HYPERELASTICITY MULTI-PHYSICS PIEZOELECTRICITY BUCKLING
下载PDF
Auxetic mechanical metamaterials: from soft to stiff 被引量:1
10
作者 Xiang Li Weitao Peng +2 位作者 Wenwang Wu Jian Xiong Yang Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期60-85,共26页
Auxetic mechanical metamaterials are artificially architected materials that possess negative Poisson’s ratio,demonstrating transversal contracting deformation under external vertical compression loading.Their physic... Auxetic mechanical metamaterials are artificially architected materials that possess negative Poisson’s ratio,demonstrating transversal contracting deformation under external vertical compression loading.Their physical properties are mainly determined by spatial topological configurations.Traditionally,classical auxetic mechanical metamaterials exhibit relatively lower mechanical stiffness,compared to classic stretching dominated architectures.Nevertheless,in recent years,several novel auxetic mechanical metamaterials with high stiffness have been designed and proposed for energy absorption,load-bearing,and thermal-mechanical coupling applications.In this paper,mechanical design methods for designing auxetic structures with soft and stiff mechanical behavior are summarized and classified.For soft auxetic mechanical metamaterials,classic methods,such as using soft basic material,hierarchical design,tensile braided design,and curved ribs,are proposed.In comparison,for stiff auxetic mechanical metamaterials,design schemes,such as hard base material,hierarchical design,composite design,and adding additional load-bearing ribs,are proposed.Multi-functional applications of soft and stiff auxetic mechanical metamaterials are then reviewed.We hope this study could provide some guidelines for designing programmed auxetics with specified mechanical stiffness and deformation abilities according to demand. 展开更多
关键词 AUXETIC mechanical metamaterial SOFT STIFF structural design
下载PDF
Designing radiative cooling metamaterials for passive thermal management by particle swarm optimization
11
作者 闫申申 刘岩 +3 位作者 王子 兰晓华 汪毅 任捷 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期37-42,共6页
The passive radiative cooling technology shows a great potential application on reducing the enormous global energy consumption.The multilayer metamaterials could enhance the radiative cooling performance.However,it i... The passive radiative cooling technology shows a great potential application on reducing the enormous global energy consumption.The multilayer metamaterials could enhance the radiative cooling performance.However,it is a challenge to design the radiative cooler.In this work,based on the particle swarm optimization(PSO)evolutionary algorithm,we develop an intelligent workflow in designing photonic radiative cooling metamaterials.Specifically,we design two 10-layer SiO_(2) radiative coolers doped by cylindrical MgF_(2) or air impurities,possessing high emissivity within the selective(8–13μm)and broadband(8–25μm)atmospheric transparency windows,respectively.Our two kinds of coolers demonstrate power density as high as 119 W/m^(2) and 132 W/m^(2) at the room temperature(300 K).Our scheme does not rely on the usage of special materials,forming high-performing metamaterials with conventional poor-performing components.This significant improvement of the emission spectra proves the effectiveness of our inverse design algorithm in boosting the discovery of high-performing functional metamaterials. 展开更多
关键词 photonic devices passive radiative cooling METAMATERIAL optimization algorithm
下载PDF
Nonlinear wave propagation in acoustic metamaterials with bilinear nonlinearity
12
作者 梁诗琪 刘杰惠 +1 位作者 赖耘 刘晓宙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期405-411,共7页
Nonlinear phononic crystals have attracted great interest because of their unique properties absent in linear phononic crystals.However,few researches have considered the bilinear nonlinearity as well as its consequen... Nonlinear phononic crystals have attracted great interest because of their unique properties absent in linear phononic crystals.However,few researches have considered the bilinear nonlinearity as well as its consequences in acoustic metamaterials.Hence,we introduce bilinear nonlinearity into acoustic metamaterials,and investigate the propagation behaviors of the fundamental and the second harmonic waves in the nonlinear acoustic metamaterials by discretization method,revealing the influence of the system parameters.Furthermore,we investigate the influence of partially periodic nonlinear acoustic metamaterials on the second harmonic wave propagation,and the results suggest that pass-band and band-gap can be transformed into each other under certain conditions.Our findings could be beneficial to the band gap control in nonlinear acoustic metamaterials. 展开更多
关键词 bilinear nonlinearity phononic crystal band-gap manipulation nonlinear acoustic metamaterial
下载PDF
Design,fabrication and optimization of electromagnetic absorption metamaterials
13
作者 娄琦 张旭东 夏明岗 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期1-14,共14页
For decades,the rapid development of wireless communication has provided people a smarter way of living.However,a significant increase in electromagnetic pollution is an unavoidable consequence.Evading radar detection... For decades,the rapid development of wireless communication has provided people a smarter way of living.However,a significant increase in electromagnetic pollution is an unavoidable consequence.Evading radar detection in modern warfare has also become an important prerequisite for survival on the battlefield.This review provides a comprehensive overview of the current status and types of electromagnetic absorption metamaterials,especially their design and preparation methods.Moreover,this review focuses on the strategies used to optimize the absorber absorption performance.Finally,this review presents a viewpoint on future research on electromagnetic absorption metamaterials,the main challenges that need to be addressed and the possible solutions. 展开更多
关键词 METAMATERIAL electromagnetic wave absorption fractal design
下载PDF
“超材料(metamaterials)”:超越材料性能的自然极限 被引量:11
14
作者 周济 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第S1期21-22,共2页
关键词 超材料 metamaterials 左手材料 光子晶体
下载PDF
一种设计Metamaterials结构的新思路 被引量:3
15
作者 王政平 马杰 张振辉 《光学与光电技术》 2009年第1期84-87,91,共5页
Metamaterials因其在特定频段内同时满足负的介电常数和负磁导率而具有与常规介质不同的电磁特性,该电磁特性与Metamaterials的结构密切相关。分析了线环结构的结构参数与其电磁特性的关系,在此基础上提出了一种方形环结构设计。仿真结... Metamaterials因其在特定频段内同时满足负的介电常数和负磁导率而具有与常规介质不同的电磁特性,该电磁特性与Metamaterials的结构密切相关。分析了线环结构的结构参数与其电磁特性的关系,在此基础上提出了一种方形环结构设计。仿真结果表明,方形环结构可以同时满足负的介电常数和负磁导率,具有负折射特性,而且具有比线环结构更宽的带宽。 展开更多
关键词 左手材料 metamaterials 负介电常数 负磁导率
下载PDF
电磁Metamaterials调制器研究 被引量:1
16
作者 殷勇 胡江川 《激光与红外》 CAS CSCD 北大核心 2008年第12期1221-1224,共4页
对电磁Metamaterials进行了介绍和研究,设计了一种工作在360GHz的电磁Metamaterials。通过详细研究表明,其可以利用光电导效应制作出工作于360GHz的太赫兹调制器。并对采用该技术搭建360GHz高速无线通信系统的可行性进行了简要分析。本... 对电磁Metamaterials进行了介绍和研究,设计了一种工作在360GHz的电磁Metamaterials。通过详细研究表明,其可以利用光电导效应制作出工作于360GHz的太赫兹调制器。并对采用该技术搭建360GHz高速无线通信系统的可行性进行了简要分析。本方法还可以应用到利用该材料的其他频段上,尤其是太赫兹频段上可以表现出其优势。 展开更多
关键词 电磁metamaterials 360GHz 调制器
下载PDF
Photoluminescence control by hyperbolic metamaterials and metasurfaces:a review 被引量:4
17
作者 Leonid Yu.Beliaev Osamu Takayama +1 位作者 Pavel N.Melentiev Andrei V.Lavrinenko 《Opto-Electronic Advances》 SCIE 2021年第8期30-56,共27页
Photolu min esce nee in clud ing fluoresce nee plays a great role in a wide variety of applicati ons from biomedical sensing and imag ing to optoelectr on ics.Therefore,the enhan ceme nt and con trol of photolu min es... Photolu min esce nee in clud ing fluoresce nee plays a great role in a wide variety of applicati ons from biomedical sensing and imag ing to optoelectr on ics.Therefore,the enhan ceme nt and con trol of photolu min esce nee has imme nse impact on both fun dame ntal scie ntific research and aforeme nti oned applicati ons.Among various nano phot tonic schemes and nanostructures to enhance the photoluminescence,we focus on a certain type of nanostructures,hyperbolic metamaterials(HMMs).HMMs are highly ani sotropic metamaterials,which produce intense localized electric fields.Therefore,HMMs n aturally boost photolu min esce nee from dye molecules,qua ntum dots,n itroge n-vaca ncy cen ters in diam on ds,perovskites and tra nsiti on metal dichalcoge nides.We provide an overview of various con figuratio ns of HMMs,i nclud ing metal-dielectric multilayers,trenches,metallic nanowires,and cavity structures fabricated with the use of noble metals,transparent conductive oxides,and refractory metals as plasmonic elements.We also discuss lasing action realized with HMMs. 展开更多
关键词 FLUORESCENCE metamaterials metasurfaces Purcell effect NANOPHOTONICS hyperbolic metamaterials
下载PDF
Metamaterials and metasurfaces for designing metadevices:Perfect absorbers and microstrip patch antennas 被引量:2
18
作者 刘亚红 赵晓鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期235-249,共15页
In the past twenty years, electromagnetic metamaterials represented by left-handed metamaterials(LHMs) have attracted considerable attention due to the unique properties such as negative refraction, perfect lens, an... In the past twenty years, electromagnetic metamaterials represented by left-handed metamaterials(LHMs) have attracted considerable attention due to the unique properties such as negative refraction, perfect lens, and electromagnetic cloaks. In this paper, we present a comprehensive review of our group's work on metamaterials and metasurfaces. We present several types of LHMs and chiral metamaterials. As a two-dimensional equivalent of bulk three-dimensional metamaterials, metasurfaces have led to a myriad of devices due to the advantages of lower profile, lower losses, and simpler to fabricate than bulk three-dimensional metamaterials. We demonstrate the novel microwave metadevices based on metamaterials and metasurfaces: perfect absorbers and microwave patch antennas, including novel transmission line antennas,high gain resonant cavity antennas, wide scanning phased array antennas, and circularly polarized antennas. 展开更多
关键词 left-handed metamaterials chiral metamaterials metasurfaces perfect absorbers microstrip patch antennas
下载PDF
一种基于单负Metamaterials成对结构的带通滤波器的设计
19
作者 王政平 张振辉 杨维 《光学与光电技术》 2010年第1期59-62,71,共5页
提出了一种基于单负Metamaterials对的带通滤波器的设计原理,给出了这种带通滤波器的谐振频率的表达式,对其谐振频率及带宽与其决定因素之间的关系进行了计算,对计算结果进行了讨论,为设计单负Metamaterial对带通滤波器的理论与方法提... 提出了一种基于单负Metamaterials对的带通滤波器的设计原理,给出了这种带通滤波器的谐振频率的表达式,对其谐振频率及带宽与其决定因素之间的关系进行了计算,对计算结果进行了讨论,为设计单负Metamaterial对带通滤波器的理论与方法提供了依据。研究结果表明:利用单负Metamaterials对的确可以实现带通滤波器;ENG板的磁导率μ_1、MNG板的介电常数ε_2、电等离子体频率ω_(ep)磁等离子体频率ω_(mp)、两个层的厚度比值a这五个因素决定了这种滤波器的中心频率;两个层的厚度及二者之间的比值决定这种滤波器的带宽。 展开更多
关键词 metamaterials 微波器件 带通滤波器 带宽
下载PDF
Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials 被引量:7
20
作者 Francesco Monticone Andrea Alù 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期64-75,共12页
The rise of plasmonic metamaterials in recent years has unveiled the possibility of revolutionizing the entire field of optics and photonics, challenging well-established technological limitations and paving the way t... The rise of plasmonic metamaterials in recent years has unveiled the possibility of revolutionizing the entire field of optics and photonics, challenging well-established technological limitations and paving the way to innovations at an unprecedented level To capitalize the disruptive potential of this rising field of science and technology, it is important to be able to combine the richness of optical phenomena enabled by nanoplasmonics in order to realize metamaterial components, devices, and systems of increasing complexity. Here, we review a few recent research directions in the field of plasmonic metamaterials, which may foster further advancements in this research area. We will discuss the anomalous scattering features enabled by plasmonic nanoparticles and nanoclusters, and show how they may represent the fundamental building blocks of complex nanophotonic architectures. Building on these concepts, advanced components can be designed and operated, such as optical nanoantennas and nanoantenna arrays, which, in turn, may be at the basis of metasurface devices and complex systems. Following this path, from basic phenomena to advanced functionalities, the field of plasmonic metamaterials offers the promise of an important scientific and technological impact, with applications spanning from medical diagnostics to clean energy and information processing. 展开更多
关键词 PLASMONICS metamaterials NANOPARTICLES SCATTERING
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部