以氮掺杂石墨烯(NG)催化微生物燃料电池(MFCs)的阴极,同时多级串并联方式连接MFCs与流动电极电容去离子(FCDI)装置,用以处理含盐废水。结果表明,NG-MFCs的产电脱氮性能明显提升,其最大输出电压为523 m V,NH_4^+-N的去除率达到92.7%;并...以氮掺杂石墨烯(NG)催化微生物燃料电池(MFCs)的阴极,同时多级串并联方式连接MFCs与流动电极电容去离子(FCDI)装置,用以处理含盐废水。结果表明,NG-MFCs的产电脱氮性能明显提升,其最大输出电压为523 m V,NH_4^+-N的去除率达到92.7%;并联方式下的MFCs产电输出更加稳定,处理Na Cl质量浓度2 g/L的盐溶液,MFCs-FCDI装置的除盐率达到30%。因此,NG-MFCs以其输出能量FCDI进行除盐,可达到能源利用与污水处理的双重效果。展开更多
A microbial fuel cell (MFC) is a device that converts chemical energy to electrical energy during substrate oxidation by microorganisms. The characterization and identification of these microbial communities will al...A microbial fuel cell (MFC) is a device that converts chemical energy to electrical energy during substrate oxidation by microorganisms. The characterization and identification of these microbial communities will allow better control of this electricity generation with simultaneous removal of carbon and nitrogen. This study aims to investigate the role of natural bacteria in electricity generation by studying three different sources of wastewater: the raw wastewater (RW), wastewater from an aeration tank (AEW) and returned activated sludge (RAS) from an activated sludge treatment plant. The result showed that after the MFC treatment, the number of bacterial strains was reduced from twenty strains to eight strains. Microscopic observation further showed that fifteen isolate before the treatment were gram-positive, and five were gram-negative whereas all isolates after the treatment were gram-positive rods or cocci The four strains isolated from the RAS inoculums, β-Comamonas sp., γ-Enterobacter sp., Bacillus cereus sp. and Clostridium sp. produced the highest power density of 67.57 mW/m^2 which made them potential candidates for electrochemically active bacteria in MFCs. However, the level of chemical oxygen demand (COD) removal was 20% and the total kjeldahl nitrogen (TKN) removal was 66.7%. Key words:展开更多
Recently microbial fuel cells (MFCs) have been considered as an alternative power generation technique by utilizing organic wastes. In this study, an experiment was carried out to generate bioelectricity from co-diges...Recently microbial fuel cells (MFCs) have been considered as an alternative power generation technique by utilizing organic wastes. In this study, an experiment was carried out to generate bioelectricity from co-digestion of organic waste (kitchen waste) and sewage sludge as a waste management option using microbial fuel cell (MFC) in anaerobic process. A total of five samples with different sludge-waste ratio were used with zinc (Zn) and cupper (Cu) as cell electrodes for the test. The trends of voltage generation were different for each sample in cells such as 350 mV, 263 mV, 416 mV maximum voltage were measured from sample I, II and III respectively. It was observed that the MFC with sewage sludge showed the higher values (around 960 mV) of voltages with time whereas 918 mV obtained with organic waste. Precisely comparing cases with varying the organic waste and sewage sludge ratio helps to find the best bioelectricity generation option. Using MFCs can be appeared as the solution of electricity scarcity along the world as an efficient and eco-friendly manner as well as organic solid waste and sewage sludge management.展开更多
以LF精炼炉的智能测温需求为背景,运用高温红外图像技术和西门子PLC设计一套智能测温装置,并对装置控制系统进行软硬件设计开发。采用模块化设计方法,利用Visual Studio 2017开发环境下的MFC框架开发了基于视觉的智能测温软件系统,优化...以LF精炼炉的智能测温需求为背景,运用高温红外图像技术和西门子PLC设计一套智能测温装置,并对装置控制系统进行软硬件设计开发。采用模块化设计方法,利用Visual Studio 2017开发环境下的MFC框架开发了基于视觉的智能测温软件系统,优化了精炼过程中的测温工序,同时系统的远程控制与图像可视化大大提高了作业效率,降低了测温成本。测试结果表明,该系统能够满足LF精炼炉智能测温的功能需求,系统运行稳定,人机交互效果良好,可视化程度高,具有很高的实用性,对钢铁冶金行业在LF精炼炉测温环节的自动化和智能化提供了参考。展开更多
微生物燃料电池(microbial full cells,MFC)是利用微生物作为催化剂,在微生物代谢的过程中,将有机物的化学能转化为电能并且降解COD的装置。光催化技术可以利用太阳管作为激发光源,无选择的降解各类有机污染物,但对于污水的光透过性有...微生物燃料电池(microbial full cells,MFC)是利用微生物作为催化剂,在微生物代谢的过程中,将有机物的化学能转化为电能并且降解COD的装置。光催化技术可以利用太阳管作为激发光源,无选择的降解各类有机污染物,但对于污水的光透过性有较高的要求。光催化耦合微生物降解技术,在微生物代谢后期,污水中COD下降到光催化剂反应的范围,利用光能激发催化反应,将有机物质氧化成活性基团,可以将水体中难降解的有机物分解。展开更多
运动控制技术在工业生产中占有非常重要的地位,该技术涉及了机械、自动化、计算机等技术领域,随着人工智能及工业互联网的发展,运动控制技术有着不可估量的发展空间。本文利用Visual Studio 2019开发软件,用C++语言程序实现平面篮球图的...运动控制技术在工业生产中占有非常重要的地位,该技术涉及了机械、自动化、计算机等技术领域,随着人工智能及工业互联网的发展,运动控制技术有着不可估量的发展空间。本文利用Visual Studio 2019开发软件,用C++语言程序实现平面篮球图的MFC界面设计以及运动轨迹的设定,通过固高公司生产的GTS-800-PV-PCIe运动控制器控制XYZ轴,实现平面篮球图的绘制任务。经测试,在运动控制平台上可以实现平面篮球图的绘制任务。展开更多
Renewable algae biomass, Scenedesmus obliquus, was used as substrate for generating electricity in two chamber microbial fuel cells (MFCs). From polarization test, maximum power density with pretreated algal biomass...Renewable algae biomass, Scenedesmus obliquus, was used as substrate for generating electricity in two chamber microbial fuel cells (MFCs). From polarization test, maximum power density with pretreated algal biomass was 102mW·m^2 (951mW·m^3) at current generation of 276mA·m^-2. The individual electrode potential as a function of current generation suggested that anodic oxidation process of algae substrate had limitation for high current generation in MFC. Total chemical oxygen demand (TCOD) reduction of 74% was obtained when initial TCOD concentration was 534mg · L^-1 for 150 h of operation. The main organic compounds of algae oriented biomass were lactate and acetate, which were mainly used for electricity generation. Other byproducts such as propionate and butyrate were formed at a negligible amount. Electrochemical Impedance Spectroscopy (EIS) analysis pinpointed the charge transfer resistance (112Ω ) of anode electrode, and the exchange current density of anode electrode was 1214 nA·cm^-2.展开更多
文摘以氮掺杂石墨烯(NG)催化微生物燃料电池(MFCs)的阴极,同时多级串并联方式连接MFCs与流动电极电容去离子(FCDI)装置,用以处理含盐废水。结果表明,NG-MFCs的产电脱氮性能明显提升,其最大输出电压为523 m V,NH_4^+-N的去除率达到92.7%;并联方式下的MFCs产电输出更加稳定,处理Na Cl质量浓度2 g/L的盐溶液,MFCs-FCDI装置的除盐率达到30%。因此,NG-MFCs以其输出能量FCDI进行除盐,可达到能源利用与污水处理的双重效果。
文摘A microbial fuel cell (MFC) is a device that converts chemical energy to electrical energy during substrate oxidation by microorganisms. The characterization and identification of these microbial communities will allow better control of this electricity generation with simultaneous removal of carbon and nitrogen. This study aims to investigate the role of natural bacteria in electricity generation by studying three different sources of wastewater: the raw wastewater (RW), wastewater from an aeration tank (AEW) and returned activated sludge (RAS) from an activated sludge treatment plant. The result showed that after the MFC treatment, the number of bacterial strains was reduced from twenty strains to eight strains. Microscopic observation further showed that fifteen isolate before the treatment were gram-positive, and five were gram-negative whereas all isolates after the treatment were gram-positive rods or cocci The four strains isolated from the RAS inoculums, β-Comamonas sp., γ-Enterobacter sp., Bacillus cereus sp. and Clostridium sp. produced the highest power density of 67.57 mW/m^2 which made them potential candidates for electrochemically active bacteria in MFCs. However, the level of chemical oxygen demand (COD) removal was 20% and the total kjeldahl nitrogen (TKN) removal was 66.7%. Key words:
文摘Recently microbial fuel cells (MFCs) have been considered as an alternative power generation technique by utilizing organic wastes. In this study, an experiment was carried out to generate bioelectricity from co-digestion of organic waste (kitchen waste) and sewage sludge as a waste management option using microbial fuel cell (MFC) in anaerobic process. A total of five samples with different sludge-waste ratio were used with zinc (Zn) and cupper (Cu) as cell electrodes for the test. The trends of voltage generation were different for each sample in cells such as 350 mV, 263 mV, 416 mV maximum voltage were measured from sample I, II and III respectively. It was observed that the MFC with sewage sludge showed the higher values (around 960 mV) of voltages with time whereas 918 mV obtained with organic waste. Precisely comparing cases with varying the organic waste and sewage sludge ratio helps to find the best bioelectricity generation option. Using MFCs can be appeared as the solution of electricity scarcity along the world as an efficient and eco-friendly manner as well as organic solid waste and sewage sludge management.
文摘以LF精炼炉的智能测温需求为背景,运用高温红外图像技术和西门子PLC设计一套智能测温装置,并对装置控制系统进行软硬件设计开发。采用模块化设计方法,利用Visual Studio 2017开发环境下的MFC框架开发了基于视觉的智能测温软件系统,优化了精炼过程中的测温工序,同时系统的远程控制与图像可视化大大提高了作业效率,降低了测温成本。测试结果表明,该系统能够满足LF精炼炉智能测温的功能需求,系统运行稳定,人机交互效果良好,可视化程度高,具有很高的实用性,对钢铁冶金行业在LF精炼炉测温环节的自动化和智能化提供了参考。
文摘微生物燃料电池(microbial full cells,MFC)是利用微生物作为催化剂,在微生物代谢的过程中,将有机物的化学能转化为电能并且降解COD的装置。光催化技术可以利用太阳管作为激发光源,无选择的降解各类有机污染物,但对于污水的光透过性有较高的要求。光催化耦合微生物降解技术,在微生物代谢后期,污水中COD下降到光催化剂反应的范围,利用光能激发催化反应,将有机物质氧化成活性基团,可以将水体中难降解的有机物分解。
文摘运动控制技术在工业生产中占有非常重要的地位,该技术涉及了机械、自动化、计算机等技术领域,随着人工智能及工业互联网的发展,运动控制技术有着不可估量的发展空间。本文利用Visual Studio 2019开发软件,用C++语言程序实现平面篮球图的MFC界面设计以及运动轨迹的设定,通过固高公司生产的GTS-800-PV-PCIe运动控制器控制XYZ轴,实现平面篮球图的绘制任务。经测试,在运动控制平台上可以实现平面篮球图的绘制任务。
文摘Renewable algae biomass, Scenedesmus obliquus, was used as substrate for generating electricity in two chamber microbial fuel cells (MFCs). From polarization test, maximum power density with pretreated algal biomass was 102mW·m^2 (951mW·m^3) at current generation of 276mA·m^-2. The individual electrode potential as a function of current generation suggested that anodic oxidation process of algae substrate had limitation for high current generation in MFC. Total chemical oxygen demand (TCOD) reduction of 74% was obtained when initial TCOD concentration was 534mg · L^-1 for 150 h of operation. The main organic compounds of algae oriented biomass were lactate and acetate, which were mainly used for electricity generation. Other byproducts such as propionate and butyrate were formed at a negligible amount. Electrochemical Impedance Spectroscopy (EIS) analysis pinpointed the charge transfer resistance (112Ω ) of anode electrode, and the exchange current density of anode electrode was 1214 nA·cm^-2.