A numerical study is carried out for the axisymmetric steady laminar incompressible flow of an electrically conducting micropolar fluid between two infinite parallel porous disks with the constant uniform injection th...A numerical study is carried out for the axisymmetric steady laminar incompressible flow of an electrically conducting micropolar fluid between two infinite parallel porous disks with the constant uniform injection through the surface of the disks. The fluid is subjected to an external transverse magnetic field. The governing nonlinear equations of motion are transformed into a dimensionless form through yon Karman's similarity transformation. An algorithm based on a finite difference scheme is used to solve the reduced coupled ordinary differential equations under associated boundary conditions. The effects of the Reynolds number, the magnetic parameter, the micropolar parameter, and the Prandtl number on the flow velocity and temperature distributions are discussed. The results agree well with those of the previously published work for special cases. The investigation predicts that the heat transfer rate at the surfaces of the disks increases with the increases in the Reynolds number, the magnetic parameter, and the Prandtl number. The shear stresses decrease with the increase in the injection while increase with the increase in the applied magnetic field. The shear stress factor is lower for micropolar fluids than for Newtonian fluids, which may be beneficial in the flow and thermal control in the polymeric processing.展开更多
Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance th...Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance the pressure difference between the inside and outside of FCI,are considered with a slot in Hartmann wall or a slot in side wall,respectively.The velocity and pressure distribution of FCI made of SiC/SiC_f are numerically studied to illustrate the 3-D MHD flow effects,which clearly show that the flows in fusion blanket with FCI are typical three-dimensional issues and the assumption of 2-D fully developed flows is not the real physical problem of the MHD flows in dual-coolant liquid metal fusion blanket.The optimum opening location of PES has been analyzed based on the 3-D pressure and velocity distributions.展开更多
The present paper investigates the magnetohydrodynamic(MHD) flow of a viscous fluid towards a nonlinear porous shrinking sheet.The governing equations are simplified by similarity transformations.The reduced problem...The present paper investigates the magnetohydrodynamic(MHD) flow of a viscous fluid towards a nonlinear porous shrinking sheet.The governing equations are simplified by similarity transformations.The reduced problem is then solved by the homotopy analysis method.The pertinent parameters appearing in the problem are discussed graphically and presented in tables.It is found that the shrinking solutions exist in the presence of MHD.It is also observed from the tables that the solutions for f(0) with different values of parameters are convergent.展开更多
An emerging definition of the fractal-fractional operator has been used in this study for the modeling of Casson fluid flow.The magnetohydrodynamics flow of Casson fluid has cogent in a channel where the motion of the...An emerging definition of the fractal-fractional operator has been used in this study for the modeling of Casson fluid flow.The magnetohydrodynamics flow of Casson fluid has cogent in a channel where the motion of the upper plate generates the flow while the lower plate is at a static position.The proposed model is non-dimensionalized using the Pi-Buckingham theorem to reduce the complexity in solving the model and computation time.The non-dimensional fractal-fractional model with the power-law kernel has been solved through the Laplace transform technique.The Mathcad software has been used for illustration of the influence of various parameters,i.e.,Hartman number,fractal,fractional,and Casson fluid parameters on the velocity of fluid flow.Through graphs and tables,the results have been implemented and it is shown that the boundary conditions are fully satisfied.The results reveal that the flow velocity is decreasing with the increasing values of the Hartman number and is increasing with the increasing values of the Casson fluid parameter.The findings of the fractal-fractional model have elucidated that the memory effect of the flow model has higher quality than the simple fractional and classical models.Furthermore,to show the validity of the obtained closed-form solutions,special cases have been obtained which are in agreement with the already published solutions.展开更多
The magnetohydrodynamic(MHD) flow induced by a stretching or shrinking sheet under slip conditions is studied.Analytical solutions based on the boundary layer assumption are obtained in a closed form and can be appl...The magnetohydrodynamic(MHD) flow induced by a stretching or shrinking sheet under slip conditions is studied.Analytical solutions based on the boundary layer assumption are obtained in a closed form and can be applied to a flow configuration with any arbitrary velocity distributions. Seven typical sheet velocity profiles are employed as illustrating examples. The solutions to the slip MHD flow are derived from the general solution and discussed in detail. Different from self-similar boundary layer flows, the flows studied in this work have solutions in explicit analytical forms. However, the current flows require special mass transfer at the wall, which is determined by the moving velocity of the sheet. The effects of the slip parameter, the mass transfer at the wall, and the magnetic field on the flow are also demonstrated.展开更多
Plane, transverse MHD flow through a porous structure is considered in this work. Solution to the governing equations is obtained using an inverse method in which the streamfunction of the flow is considered linear in...Plane, transverse MHD flow through a porous structure is considered in this work. Solution to the governing equations is obtained using an inverse method in which the streamfunction of the flow is considered linear in one of the space variables. Expressions for flow quantities are obtained for finitely conducting and infinitely conducting fluids.展开更多
The present paper, a theoretical analysis of steady fully developed flow and heat transfer of two immiscible magneto hydrodynamic and viscous fluid, partially filled with porous matrix and partially with clear fluid b...The present paper, a theoretical analysis of steady fully developed flow and heat transfer of two immiscible magneto hydrodynamic and viscous fluid, partially filled with porous matrix and partially with clear fluid bounded by two vertical plates, has been discussed, when both the plates are moving in opposite directions. The plates are maintained at unequal temperatures. The Brink-man-extended Darcy model has described the momentum transfer in a porous medium. The effect of various parameters and Darcy number are discussed in the flow field and the temperature profiles numerically and are expressed by graphs. The non-dimensional governing momentum and energy equations are analytically solved by applying the homotopy perturbation technique and the method of ordinary differential equation. It is observed that magnetic parameter (M) has a retarding effect on the main flow velocity and is to enhance the temperature distribution, whereas the reversal phenomenon occurs for the Darcy dissipation parameter (Da). The skin-friction component has also been determined and is presented with the help of a table. The magnetic parameter (M) reduces the skin friction coefficient for clear fluid region and is to increase the skin friction coefficient for porous region. It is also evident from table that getting bigger the width of the clear fluid layer increases the skin friction. The skin friction coefficient on both the plates (comparing at y = 0 and at y = 1 for A or B) increases when those are heated.展开更多
The effects of the second-order velocity slip and temperature jump boundary conditions on the magnetohydrodynamic (MHD) flow and heat transfer in the presence of nanoparticle fractions are investigated. In the model...The effects of the second-order velocity slip and temperature jump boundary conditions on the magnetohydrodynamic (MHD) flow and heat transfer in the presence of nanoparticle fractions are investigated. In the modeling of the water-based nanofluids containing Cu and A1203, the effects of the Brownian motion, thermophoresis, and thermal radiation are considered. The governing boundary layer equations are transformed into a system of nonlinear differential equations, and the analytical approximations of the solutions axe derived by the homotopy analysis method (HAM). The reliability and efficiency of the HAM solutions are verified by the residual errors and the numerical results in the literature. Moreover, the effects of the physical factors on the flow and heat transfer are discussed graphically.展开更多
The aim of this paper is two-dimensional magnetohydrodynamic viscous fluid bounded by infinite sheets to examine the Dufour and Soret effects on the (MHD) steady flow of an electrically conducting An incompressible...The aim of this paper is two-dimensional magnetohydrodynamic viscous fluid bounded by infinite sheets to examine the Dufour and Soret effects on the (MHD) steady flow of an electrically conducting An incompressible viscous fluid fills the porous space. The mathematical analysis is performed in the presence of viscous dissipation, Joule heating, and a first-order chemical reaction. With suitable transformations, the governing partial differential equations through momentum, energy, and concentration laws are transformed into ordinary differential equations. The resulting equations are solved by the homotopy analysis method (HAM). The convergence of the series solutions is ensured. The effects of the emerging parameters, the skin friction coefficient, the Nusselt number, and the Sherwood number are analyzed on the dimensionless velocities, temperature, and concentration fields.展开更多
The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governin...The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governing nonlinear partial differential equations along with the appropriate boundary conditions are transformed into nonlinear ordinary differential equations and numerically solved by the Keller-box method. The effects of various physical parameters on the flow and mass transfer characteristics are graphically presented and discussed. It is observed that the order of the chemical reaction is to increase the thickness of the diffusion boundary layer. Also, the mass transfer rate strongly depends on the Schmidt number and the reaction rate parameter. Furthermore, available results in the literature are obtained as a special case.展开更多
The present note consists, the effects of thermal diffusion and chemical reaction on MHD flow of dusty viscous incom-pressible, electrically conducting fluid between two vertical heated, porous, parallel plates with h...The present note consists, the effects of thermal diffusion and chemical reaction on MHD flow of dusty viscous incom-pressible, electrically conducting fluid between two vertical heated, porous, parallel plates with heat source/sink. The plate temperature is raised linearly with time and concentration level near the plate to Cw. The variable temperature and uniform mass diffusion taking into account the chemical reaction of first order. The series solution method is used to solve the mathematical equations. Effects of various parameters like chemical reaction (K), thermal diffusion (ST) and magnetic field (M) etc. on velocity profile, skin friction, concentration profile and temperature field are displayed graphically and discussed numerically for different physical parameters. The analysis developed here for thermal diffusion, bears good agreement with real life problems.展开更多
The model of mass transfer on free convective flow of a viscous incompressible electrically conducting fluid past vertically porous plate through a porous medium with time dependant permeability and oscillatory suctio...The model of mass transfer on free convective flow of a viscous incompressible electrically conducting fluid past vertically porous plate through a porous medium with time dependant permeability and oscillatory suction in presence of a transverse magnetic field is considered. Perturbation technique is obtained the solution for velocity field and concentration distribution analytically. The effects of the flow parameters on the velocity field and concentration distribution are presented with the aid of figures. Also, the skin friction and the rate of mass transfer are calculated with the aid of tables.展开更多
The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constru...The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constructive/destructive chemical reaction. The upper-convected Maxwell (UCM) model is used here to characterize the non-Newtonian behavior of the fluid. Using similarity solutions, the governing nonlinear partial differential equations are transformed into ordinary ones and are then solved numerically by the shooting method. The flow fields and mass transfer are significantly influenced by the governing parameters. The fluid velocity initially decreases as the unsteadiness parameter increases and the concentration decreases significantly due to the increase in the unsteadiness. The effect of increasing values of transpiration (suction) and the Maxwell parameter is to suppress the velocity field; however, the concentration is enhanced as transpiration (suction) and the Maxwell parameter increase. Also, it is found that the fluid velocity decreases as the magnetic parameter increases; however, the concentration increases in this case.展开更多
An unsteady magnetohydrodynamic (MHD) boundary layer flow over a shrinking permeable sheet embedded in a moving viscous electrically conducting fluid is investigated both analytically and numerically. The velocity s...An unsteady magnetohydrodynamic (MHD) boundary layer flow over a shrinking permeable sheet embedded in a moving viscous electrically conducting fluid is investigated both analytically and numerically. The velocity slip at the solid surface is taken into account in the boundary conditions. A novel analytical method named DTM- BF is proposed and used to get the approximate analytical solutions to the nonlinear governing equation along with the boundary conditions at infinity. All analytical results are compared with those obtained by a numerical method. The comparison shows good agreement, which validates the accuracy of the DTM-BF method. Moreover, the existence ranges of the dual solutions and the unique solution for various parameters are obtained. The effects of the velocity slip parameter, the unsteadiness parameter, the magnetic parameter, the suction/injection parameter, and the velocity ratio parameter on the skin friction, the unique velocity, and the dual velocity profiles are explored, respectively.展开更多
There are many problems in science and engineering where the solution shows a boundary layer character. Near the boundary the gradient is large in contrast with the smooth behaviour in the central core. A uniform grid...There are many problems in science and engineering where the solution shows a boundary layer character. Near the boundary the gradient is large in contrast with the smooth behaviour in the central core. A uniform grid is, therefore, not suitable for a numerical solution. MHD flow problems belong to this category where a velocity and induced magnetic field profiles get flattened in a transverse flow. In the present paper an optimized grid has been generated using interpo-lating wavelets. The results are compared with those obtained using uniform grid, the finite element method and also from the analytical solution.展开更多
In this paper, phenomena of superposability and self superposability in hydrodynamics and magneto hydrodynamics have been discussed. One of the most important applications of superposability in hydrodynamics is the co...In this paper, phenomena of superposability and self superposability in hydrodynamics and magneto hydrodynamics have been discussed. One of the most important applications of superposability in hydrodynamics is the construction of exact analytic solution of the basic equation of fluid dynamics. Kapur and Bhatia have given a simple idea that if two velocity vectors have self superposable and mutually superposable motion then sum or difference of these two is self superposable and vice versa and if each of the vector is superposable on the third then their sum and difference are also superposable on the third. For superposability in magneto-hydrodynamics many mathematicians like Ram Moorthy, Ram Ballabh, Mittal, Kapur & Bhatia and Gold & Krazyblocki have defined it in various ways, especially Kapur & Bhatia generalized the well-known work on superposability by Ram Ballabh to the case of viscous incompressible electrically conducting fluids in the presence of magnetic field. We found the relationship of two basic vectors for two important curvilinear coordinate systems for their use in our work. We’ve found the equations of div, curl and grad for a unit vector in parabolic cylinder coordinates and ellipsoidal coordinates for further use.展开更多
An electrically conducting fluid is driven by a stretching sheet, in the presence of a magnetic field that is strong enough to produce significant Hall current. The sheet is porous, allowing mass transfer through suct...An electrically conducting fluid is driven by a stretching sheet, in the presence of a magnetic field that is strong enough to produce significant Hall current. The sheet is porous, allowing mass transfer through suction or injection. The limiting behavior of the flow is studied, as the magnetic field strength grows indefinitely. The flow variables are properly scaled, and uniformly valid asymptotic expansions of the velocity components are obtained through parameter straining. The leading order approximations show sinusoidal behavior that is decaying exponentially, as we move away from the surface. The two-term expansions of the surface shear stress components, as well as the far field inflow speed, compare well with the corresponding finite difference solutions;even at moderate magnetic fields.展开更多
We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current...We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate. The flow in the clean fluid region is governed by Navier-Stoke’s equations while in the porous bed the equations are based on Darcy-Lapwood model. The exact solutions of velocity in the clean fluid and the porous medium consist of steady state and transient state. The time required for the transient state to decay is evaluated in detail and ultimate quasi-steady state solution has been derived analytically and also its behaviour is computationally discussed with reference to different flow parameters. The shear stresses on the boundaries and the mass flux are also obtained analytically and their behaviour is computationally discussed.展开更多
The boundary layer flow of a steady incompressible and visco-elastic fluid with short memory (obeying Walters’ B fluid model) passing over a hot vertical porous plate has been investigated in the presence of transver...The boundary layer flow of a steady incompressible and visco-elastic fluid with short memory (obeying Walters’ B fluid model) passing over a hot vertical porous plate has been investigated in the presence of transverse magnetic field. The momentum and energy equations are reduced to couple non-linear partial differential equations along with the boundary conditions by using a suitable similarity transformation. These partial differential equations are transformed to a system of coupled non-linear ordinary differential equations by employing a perturbation technique. The system is solved by developing a suitable numerical procedure such as implicit finite difference scheme along with Newton’s linearization method. The computational results for the flow quantities have presented graphically for the effects of thermal radiation, viscous dissipation, heat generation/absorption, visco-elasticity, Hartmann number and the permeability parameter. Results demonstrated that Prandtl number has more pronouncing effect on the temperature distribution rather than the viscosity parameter as well as the thermal radiation parameter. Further the velocity gradient changes significantly due to the presence of temperature dependent variable viscosity.展开更多
Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes m...Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes model is considered in hydromagnetic flow. Three-dimensional (3D) unsteady fluid motion is generated by the periodic oscillations of a rotating disk. Similarity transformations are used to obtain the normalized fluid flow model. The successive over relaxation (SOR) method with finite difference schemes are accomplished for the numerical solution of the obtained partial differential non-linear system. The flow features of the velocity, microrotation, temperature, and concentration fields are discussed in pictorial forms for various physical flow parameters. The couple stresses and heat and mass transfer rates for different physical quantities are explained via tabular forms. For better insight of the physical fluid model, 3D fluid phenomena and two-dimensional (2D) contours are also plotted. The results show that the micropolar fluids contain microstructure having non-symmetric stress tensor and are useful in lubrication theory. Moreover, the thermal and concentration waves in Cattaneo-Christov models have a significance role in the laser heating and enhancement in thermal conductivity.展开更多
文摘A numerical study is carried out for the axisymmetric steady laminar incompressible flow of an electrically conducting micropolar fluid between two infinite parallel porous disks with the constant uniform injection through the surface of the disks. The fluid is subjected to an external transverse magnetic field. The governing nonlinear equations of motion are transformed into a dimensionless form through yon Karman's similarity transformation. An algorithm based on a finite difference scheme is used to solve the reduced coupled ordinary differential equations under associated boundary conditions. The effects of the Reynolds number, the magnetic parameter, the micropolar parameter, and the Prandtl number on the flow velocity and temperature distributions are discussed. The results agree well with those of the previously published work for special cases. The investigation predicts that the heat transfer rate at the surfaces of the disks increases with the increases in the Reynolds number, the magnetic parameter, and the Prandtl number. The shear stresses decrease with the increase in the injection while increase with the increase in the applied magnetic field. The shear stress factor is lower for micropolar fluids than for Newtonian fluids, which may be beneficial in the flow and thermal control in the polymeric processing.
基金supported by National Natural Science Foundation of China with grant Nos.10872212,50936006National Magnetic Confinement Fusion Science Program in China with grant No.2009GB10401
文摘Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance the pressure difference between the inside and outside of FCI,are considered with a slot in Hartmann wall or a slot in side wall,respectively.The velocity and pressure distribution of FCI made of SiC/SiC_f are numerically studied to illustrate the 3-D MHD flow effects,which clearly show that the flows in fusion blanket with FCI are typical three-dimensional issues and the assumption of 2-D fully developed flows is not the real physical problem of the MHD flows in dual-coolant liquid metal fusion blanket.The optimum opening location of PES has been analyzed based on the 3-D pressure and velocity distributions.
文摘The present paper investigates the magnetohydrodynamic(MHD) flow of a viscous fluid towards a nonlinear porous shrinking sheet.The governing equations are simplified by similarity transformations.The reduced problem is then solved by the homotopy analysis method.The pertinent parameters appearing in the problem are discussed graphically and presented in tables.It is found that the shrinking solutions exist in the presence of MHD.It is also observed from the tables that the solutions for f(0) with different values of parameters are convergent.
基金funded by Yayasan Universiti Teknologi PETRONAS(Y.U.T.P.),Cost Center 015LC0-278.
文摘An emerging definition of the fractal-fractional operator has been used in this study for the modeling of Casson fluid flow.The magnetohydrodynamics flow of Casson fluid has cogent in a channel where the motion of the upper plate generates the flow while the lower plate is at a static position.The proposed model is non-dimensionalized using the Pi-Buckingham theorem to reduce the complexity in solving the model and computation time.The non-dimensional fractal-fractional model with the power-law kernel has been solved through the Laplace transform technique.The Mathcad software has been used for illustration of the influence of various parameters,i.e.,Hartman number,fractal,fractional,and Casson fluid parameters on the velocity of fluid flow.Through graphs and tables,the results have been implemented and it is shown that the boundary conditions are fully satisfied.The results reveal that the flow velocity is decreasing with the increasing values of the Hartman number and is increasing with the increasing values of the Casson fluid parameter.The findings of the fractal-fractional model have elucidated that the memory effect of the flow model has higher quality than the simple fractional and classical models.Furthermore,to show the validity of the obtained closed-form solutions,special cases have been obtained which are in agreement with the already published solutions.
文摘The magnetohydrodynamic(MHD) flow induced by a stretching or shrinking sheet under slip conditions is studied.Analytical solutions based on the boundary layer assumption are obtained in a closed form and can be applied to a flow configuration with any arbitrary velocity distributions. Seven typical sheet velocity profiles are employed as illustrating examples. The solutions to the slip MHD flow are derived from the general solution and discussed in detail. Different from self-similar boundary layer flows, the flows studied in this work have solutions in explicit analytical forms. However, the current flows require special mass transfer at the wall, which is determined by the moving velocity of the sheet. The effects of the slip parameter, the mass transfer at the wall, and the magnetic field on the flow are also demonstrated.
文摘Plane, transverse MHD flow through a porous structure is considered in this work. Solution to the governing equations is obtained using an inverse method in which the streamfunction of the flow is considered linear in one of the space variables. Expressions for flow quantities are obtained for finitely conducting and infinitely conducting fluids.
文摘The present paper, a theoretical analysis of steady fully developed flow and heat transfer of two immiscible magneto hydrodynamic and viscous fluid, partially filled with porous matrix and partially with clear fluid bounded by two vertical plates, has been discussed, when both the plates are moving in opposite directions. The plates are maintained at unequal temperatures. The Brink-man-extended Darcy model has described the momentum transfer in a porous medium. The effect of various parameters and Darcy number are discussed in the flow field and the temperature profiles numerically and are expressed by graphs. The non-dimensional governing momentum and energy equations are analytically solved by applying the homotopy perturbation technique and the method of ordinary differential equation. It is observed that magnetic parameter (M) has a retarding effect on the main flow velocity and is to enhance the temperature distribution, whereas the reversal phenomenon occurs for the Darcy dissipation parameter (Da). The skin-friction component has also been determined and is presented with the help of a table. The magnetic parameter (M) reduces the skin friction coefficient for clear fluid region and is to increase the skin friction coefficient for porous region. It is also evident from table that getting bigger the width of the clear fluid layer increases the skin friction. The skin friction coefficient on both the plates (comparing at y = 0 and at y = 1 for A or B) increases when those are heated.
基金Project supported by the National Natural Science Foundation of China(Nos.51276014 and51476191)the Fundamental Research Funds for the Central Universities(No.FRF-BR-12-004)
文摘The effects of the second-order velocity slip and temperature jump boundary conditions on the magnetohydrodynamic (MHD) flow and heat transfer in the presence of nanoparticle fractions are investigated. In the modeling of the water-based nanofluids containing Cu and A1203, the effects of the Brownian motion, thermophoresis, and thermal radiation are considered. The governing boundary layer equations are transformed into a system of nonlinear differential equations, and the analytical approximations of the solutions axe derived by the homotopy analysis method (HAM). The reliability and efficiency of the HAM solutions are verified by the residual errors and the numerical results in the literature. Moreover, the effects of the physical factors on the flow and heat transfer are discussed graphically.
基金Project supported by the Deanship of Scientific Research (DSR) of King Abdulaziz University of Saudi Arabia (No. HiCi/40-3/1432H)
文摘The aim of this paper is two-dimensional magnetohydrodynamic viscous fluid bounded by infinite sheets to examine the Dufour and Soret effects on the (MHD) steady flow of an electrically conducting An incompressible viscous fluid fills the porous space. The mathematical analysis is performed in the presence of viscous dissipation, Joule heating, and a first-order chemical reaction. With suitable transformations, the governing partial differential equations through momentum, energy, and concentration laws are transformed into ordinary differential equations. The resulting equations are solved by the homotopy analysis method (HAM). The convergence of the series solutions is ensured. The effects of the emerging parameters, the skin friction coefficient, the Nusselt number, and the Sherwood number are analyzed on the dimensionless velocities, temperature, and concentration fields.
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region of China (No. HKU 715510E)
文摘The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governing nonlinear partial differential equations along with the appropriate boundary conditions are transformed into nonlinear ordinary differential equations and numerically solved by the Keller-box method. The effects of various physical parameters on the flow and mass transfer characteristics are graphically presented and discussed. It is observed that the order of the chemical reaction is to increase the thickness of the diffusion boundary layer. Also, the mass transfer rate strongly depends on the Schmidt number and the reaction rate parameter. Furthermore, available results in the literature are obtained as a special case.
文摘The present note consists, the effects of thermal diffusion and chemical reaction on MHD flow of dusty viscous incom-pressible, electrically conducting fluid between two vertical heated, porous, parallel plates with heat source/sink. The plate temperature is raised linearly with time and concentration level near the plate to Cw. The variable temperature and uniform mass diffusion taking into account the chemical reaction of first order. The series solution method is used to solve the mathematical equations. Effects of various parameters like chemical reaction (K), thermal diffusion (ST) and magnetic field (M) etc. on velocity profile, skin friction, concentration profile and temperature field are displayed graphically and discussed numerically for different physical parameters. The analysis developed here for thermal diffusion, bears good agreement with real life problems.
文摘The model of mass transfer on free convective flow of a viscous incompressible electrically conducting fluid past vertically porous plate through a porous medium with time dependant permeability and oscillatory suction in presence of a transverse magnetic field is considered. Perturbation technique is obtained the solution for velocity field and concentration distribution analytically. The effects of the flow parameters on the velocity field and concentration distribution are presented with the aid of figures. Also, the skin friction and the rate of mass transfer are calculated with the aid of tables.
基金One of the authors(S.M.) was financially supported by UGC New Delhi,India through the Special Assistance Programme DSA Phase-1
文摘The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constructive/destructive chemical reaction. The upper-convected Maxwell (UCM) model is used here to characterize the non-Newtonian behavior of the fluid. Using similarity solutions, the governing nonlinear partial differential equations are transformed into ordinary ones and are then solved numerically by the shooting method. The flow fields and mass transfer are significantly influenced by the governing parameters. The fluid velocity initially decreases as the unsteadiness parameter increases and the concentration decreases significantly due to the increase in the unsteadiness. The effect of increasing values of transpiration (suction) and the Maxwell parameter is to suppress the velocity field; however, the concentration is enhanced as transpiration (suction) and the Maxwell parameter increase. Also, it is found that the fluid velocity decreases as the magnetic parameter increases; however, the concentration increases in this case.
基金Project supported by the National Natural Science Foundation of China (Nos. 50936003 and 51076012)
文摘An unsteady magnetohydrodynamic (MHD) boundary layer flow over a shrinking permeable sheet embedded in a moving viscous electrically conducting fluid is investigated both analytically and numerically. The velocity slip at the solid surface is taken into account in the boundary conditions. A novel analytical method named DTM- BF is proposed and used to get the approximate analytical solutions to the nonlinear governing equation along with the boundary conditions at infinity. All analytical results are compared with those obtained by a numerical method. The comparison shows good agreement, which validates the accuracy of the DTM-BF method. Moreover, the existence ranges of the dual solutions and the unique solution for various parameters are obtained. The effects of the velocity slip parameter, the unsteadiness parameter, the magnetic parameter, the suction/injection parameter, and the velocity ratio parameter on the skin friction, the unique velocity, and the dual velocity profiles are explored, respectively.
文摘There are many problems in science and engineering where the solution shows a boundary layer character. Near the boundary the gradient is large in contrast with the smooth behaviour in the central core. A uniform grid is, therefore, not suitable for a numerical solution. MHD flow problems belong to this category where a velocity and induced magnetic field profiles get flattened in a transverse flow. In the present paper an optimized grid has been generated using interpo-lating wavelets. The results are compared with those obtained using uniform grid, the finite element method and also from the analytical solution.
文摘In this paper, phenomena of superposability and self superposability in hydrodynamics and magneto hydrodynamics have been discussed. One of the most important applications of superposability in hydrodynamics is the construction of exact analytic solution of the basic equation of fluid dynamics. Kapur and Bhatia have given a simple idea that if two velocity vectors have self superposable and mutually superposable motion then sum or difference of these two is self superposable and vice versa and if each of the vector is superposable on the third then their sum and difference are also superposable on the third. For superposability in magneto-hydrodynamics many mathematicians like Ram Moorthy, Ram Ballabh, Mittal, Kapur & Bhatia and Gold & Krazyblocki have defined it in various ways, especially Kapur & Bhatia generalized the well-known work on superposability by Ram Ballabh to the case of viscous incompressible electrically conducting fluids in the presence of magnetic field. We found the relationship of two basic vectors for two important curvilinear coordinate systems for their use in our work. We’ve found the equations of div, curl and grad for a unit vector in parabolic cylinder coordinates and ellipsoidal coordinates for further use.
文摘An electrically conducting fluid is driven by a stretching sheet, in the presence of a magnetic field that is strong enough to produce significant Hall current. The sheet is porous, allowing mass transfer through suction or injection. The limiting behavior of the flow is studied, as the magnetic field strength grows indefinitely. The flow variables are properly scaled, and uniformly valid asymptotic expansions of the velocity components are obtained through parameter straining. The leading order approximations show sinusoidal behavior that is decaying exponentially, as we move away from the surface. The two-term expansions of the surface shear stress components, as well as the far field inflow speed, compare well with the corresponding finite difference solutions;even at moderate magnetic fields.
文摘We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate. The flow in the clean fluid region is governed by Navier-Stoke’s equations while in the porous bed the equations are based on Darcy-Lapwood model. The exact solutions of velocity in the clean fluid and the porous medium consist of steady state and transient state. The time required for the transient state to decay is evaluated in detail and ultimate quasi-steady state solution has been derived analytically and also its behaviour is computationally discussed with reference to different flow parameters. The shear stresses on the boundaries and the mass flux are also obtained analytically and their behaviour is computationally discussed.
文摘The boundary layer flow of a steady incompressible and visco-elastic fluid with short memory (obeying Walters’ B fluid model) passing over a hot vertical porous plate has been investigated in the presence of transverse magnetic field. The momentum and energy equations are reduced to couple non-linear partial differential equations along with the boundary conditions by using a suitable similarity transformation. These partial differential equations are transformed to a system of coupled non-linear ordinary differential equations by employing a perturbation technique. The system is solved by developing a suitable numerical procedure such as implicit finite difference scheme along with Newton’s linearization method. The computational results for the flow quantities have presented graphically for the effects of thermal radiation, viscous dissipation, heat generation/absorption, visco-elasticity, Hartmann number and the permeability parameter. Results demonstrated that Prandtl number has more pronouncing effect on the temperature distribution rather than the viscosity parameter as well as the thermal radiation parameter. Further the velocity gradient changes significantly due to the presence of temperature dependent variable viscosity.
文摘Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes model is considered in hydromagnetic flow. Three-dimensional (3D) unsteady fluid motion is generated by the periodic oscillations of a rotating disk. Similarity transformations are used to obtain the normalized fluid flow model. The successive over relaxation (SOR) method with finite difference schemes are accomplished for the numerical solution of the obtained partial differential non-linear system. The flow features of the velocity, microrotation, temperature, and concentration fields are discussed in pictorial forms for various physical flow parameters. The couple stresses and heat and mass transfer rates for different physical quantities are explained via tabular forms. For better insight of the physical fluid model, 3D fluid phenomena and two-dimensional (2D) contours are also plotted. The results show that the micropolar fluids contain microstructure having non-symmetric stress tensor and are useful in lubrication theory. Moreover, the thermal and concentration waves in Cattaneo-Christov models have a significance role in the laser heating and enhancement in thermal conductivity.