为解决油浸式电力变压器中低能放电、高能放电等放电性故障的定位问题,提出了基于油中金属分析(Metal In-Oil Analysis,MIA)的放电性故障定位方法。通过对变压器内部高故障概率构件进行表面处理,将潜在的故障信息源预置于构件表面,并应...为解决油浸式电力变压器中低能放电、高能放电等放电性故障的定位问题,提出了基于油中金属分析(Metal In-Oil Analysis,MIA)的放电性故障定位方法。通过对变压器内部高故障概率构件进行表面处理,将潜在的故障信息源预置于构件表面,并应用示位金属(Metal for Position Indication,MPI)进行发生故障构件的确定。在此基础上,结合已有的局部放电、油中溶解气体分析等在线监测系统进行软、硬件的整合,可以实现较为完善的变压器放电性故障的诊断与定位。研究结果表明,该方法在提高放电性故障定位精度的同时,还可以降低对原有某种特定故障定位方法在精度方面的要求,并通过连续监测使运行维护人员对变压器的潜伏性故障信息有更为全面的掌握,为变压器状态检修的实现提供了新的技术支撑。展开更多
文摘为解决油浸式电力变压器中低能放电、高能放电等放电性故障的定位问题,提出了基于油中金属分析(Metal In-Oil Analysis,MIA)的放电性故障定位方法。通过对变压器内部高故障概率构件进行表面处理,将潜在的故障信息源预置于构件表面,并应用示位金属(Metal for Position Indication,MPI)进行发生故障构件的确定。在此基础上,结合已有的局部放电、油中溶解气体分析等在线监测系统进行软、硬件的整合,可以实现较为完善的变压器放电性故障的诊断与定位。研究结果表明,该方法在提高放电性故障定位精度的同时,还可以降低对原有某种特定故障定位方法在精度方面的要求,并通过连续监测使运行维护人员对变压器的潜伏性故障信息有更为全面的掌握,为变压器状态检修的实现提供了新的技术支撑。