In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear un...In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.展开更多
In this paper, the robust control problem of general nonlinear multi-input multi-output (MIMO) systems is proposed. The robustness against unknown disturbances is considered. Two algorithms based on the Sliding Mode C...In this paper, the robust control problem of general nonlinear multi-input multi-output (MIMO) systems is proposed. The robustness against unknown disturbances is considered. Two algorithms based on the Sliding Mode Control (SMC) for nonlinear coupled multi-input multi-output (MIMO) systems are proposed: the first order sliding mode control (FOSMC) with saturation (sat) function and the FOSMC with sat combined with integrator controller. Those algorithms were simulated and implemented on the three tanks test-bed system and the exprimental results confirm the effectiveness of our control design.展开更多
In the field of fault diagnosis, the state equation of nonlinear system, including the actuator and the component, has been established. When the faults in the system appear, it is difficult to observe the fault isola...In the field of fault diagnosis, the state equation of nonlinear system, including the actuator and the component, has been established. When the faults in the system appear, it is difficult to observe the fault isolation between the actuator and the component. In order to diagnose the component fault in the nonlinear systems, a novel strategy is proposed. The nonlinear state equation with only the component system is built on mathematical equations. The nonlinearity of the component equation is expanded and estimated with Taylor series. If the actuator is perfect, the anomaly of the state equations reflects the component fault. The fault feature index is defined to detect the component fault and the initial fault. The numerical examples of the component faults are simulated for multiple-input multiple-output(MIMO)nonlinear systems. The results show that the component faults,as well as the incipient faults, can be detected. Furthermore, the effectiveness of the proposed strategy is verified. This method can also provide a foundation for the component fault reconfiguration control.展开更多
In this paper the problem of practical stabilization for a significant class of MIMO uncertain pseudo-linear and pseudo-quadratic systems, with additional bounded nonlinearities and/or bounded disturbances, is conside...In this paper the problem of practical stabilization for a significant class of MIMO uncertain pseudo-linear and pseudo-quadratic systems, with additional bounded nonlinearities and/or bounded disturbances, is considered. By using the concept of majorant system, via Lyapunov approach, new fundamental theorems, from which derive explicit formulas to design state feedback control laws, with a possible imperfect compensation of nonlinearities and disturbances, are stated. These results guarantee a specified convergence velocity of the linearized system of the majorant system and a desired steady-state output for generic uncertainties and/or generic bounded nonlinearities and/or bounded disturbances.展开更多
在多输入多输出(Multiple-input multiple-output,MIMO)非线性系统的执行器故障容错控制问题中,控制器能够处理的执行器故障集合的大小与执行器分组方法有很大关系.为扩大系统可处理的执行器故障集合,本文针对一类具有执行器故障的MIMO...在多输入多输出(Multiple-input multiple-output,MIMO)非线性系统的执行器故障容错控制问题中,控制器能够处理的执行器故障集合的大小与执行器分组方法有很大关系.为扩大系统可处理的执行器故障集合,本文针对一类具有执行器故障的MIMO非线性最小相位系统,提出基于多模型切换(Multiple model switching and tuning,MMST)执行器分组的自适应补偿控制方法.考虑系统的执行器卡死、部分失效和完全失效故障,在微分几何反馈线性化的基础上,研究基于多模型切换的执行器分组切换指标和切换策略,设计了基于反演控制的自适应补偿跟踪控制律,所设计的控制律能保证系统在执行器故障时闭环稳定,渐近跟踪给定的参考信号,且提出的分组方法扩大了可补偿的执行器故障集合.仿真结果表明了本文设计方法的有效性.展开更多
In this paper,an adaptive neural tracking control scheme for a class of uncertain switched multi-input multi-output(MIMO)pure-feedback nonlinear systems is proposed.The considered MIMO pure-feedback nonlinear system c...In this paper,an adaptive neural tracking control scheme for a class of uncertain switched multi-input multi-output(MIMO)pure-feedback nonlinear systems is proposed.The considered MIMO pure-feedback nonlinear system contains input and output constraints,completely unknown nonlinear functions and time-varying external disturbances.The unknown nonlinear functions representing system uncertainties are identified via radial basis function neural networks(RBFNNs).Then,the Nussbaum function is utilized to deal with the nonlinearity issue caused by the input saturation.To prevent system outputs from violating prescribed constraints,the barrier Lyapunov functions(BLFs)are introduced.Also,a switched disturbance observer is designed to make the time-varying external disturbances estimable.Based on the backstepping recursive design technique and the Lyapunov stability theory,the developed control method is verified applicable to ensure the boundedness of all signals in the closed-loop system and make the system output track given reference signals well.Finally,a numerical simulation is given to demonstrate the effectiveness of the proposed control method.展开更多
基金supported by the Aerospace Science and Technology Innovation Foundation of China(CAST2014CH01)the Aeronautical Science Foundation of China(2015ZC560007)+1 种基金the Jiangxi Natural Science Foundation of China(20151BBE50026)National Natural Science Foundation of China(11462015)
文摘In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.
文摘In this paper, the robust control problem of general nonlinear multi-input multi-output (MIMO) systems is proposed. The robustness against unknown disturbances is considered. Two algorithms based on the Sliding Mode Control (SMC) for nonlinear coupled multi-input multi-output (MIMO) systems are proposed: the first order sliding mode control (FOSMC) with saturation (sat) function and the FOSMC with sat combined with integrator controller. Those algorithms were simulated and implemented on the three tanks test-bed system and the exprimental results confirm the effectiveness of our control design.
基金supported by the National Natural Science Foundation of China(6117509261433016)
文摘In the field of fault diagnosis, the state equation of nonlinear system, including the actuator and the component, has been established. When the faults in the system appear, it is difficult to observe the fault isolation between the actuator and the component. In order to diagnose the component fault in the nonlinear systems, a novel strategy is proposed. The nonlinear state equation with only the component system is built on mathematical equations. The nonlinearity of the component equation is expanded and estimated with Taylor series. If the actuator is perfect, the anomaly of the state equations reflects the component fault. The fault feature index is defined to detect the component fault and the initial fault. The numerical examples of the component faults are simulated for multiple-input multiple-output(MIMO)nonlinear systems. The results show that the component faults,as well as the incipient faults, can be detected. Furthermore, the effectiveness of the proposed strategy is verified. This method can also provide a foundation for the component fault reconfiguration control.
文摘In this paper the problem of practical stabilization for a significant class of MIMO uncertain pseudo-linear and pseudo-quadratic systems, with additional bounded nonlinearities and/or bounded disturbances, is considered. By using the concept of majorant system, via Lyapunov approach, new fundamental theorems, from which derive explicit formulas to design state feedback control laws, with a possible imperfect compensation of nonlinearities and disturbances, are stated. These results guarantee a specified convergence velocity of the linearized system of the majorant system and a desired steady-state output for generic uncertainties and/or generic bounded nonlinearities and/or bounded disturbances.
文摘在多输入多输出(Multiple-input multiple-output,MIMO)非线性系统的执行器故障容错控制问题中,控制器能够处理的执行器故障集合的大小与执行器分组方法有很大关系.为扩大系统可处理的执行器故障集合,本文针对一类具有执行器故障的MIMO非线性最小相位系统,提出基于多模型切换(Multiple model switching and tuning,MMST)执行器分组的自适应补偿控制方法.考虑系统的执行器卡死、部分失效和完全失效故障,在微分几何反馈线性化的基础上,研究基于多模型切换的执行器分组切换指标和切换策略,设计了基于反演控制的自适应补偿跟踪控制律,所设计的控制律能保证系统在执行器故障时闭环稳定,渐近跟踪给定的参考信号,且提出的分组方法扩大了可补偿的执行器故障集合.仿真结果表明了本文设计方法的有效性.
基金partially supported by the National Natural Science Foundation of China under Grant No.62203064the Eduction Committee Liaoning Province,China under Grant No. LJ2019002
文摘In this paper,an adaptive neural tracking control scheme for a class of uncertain switched multi-input multi-output(MIMO)pure-feedback nonlinear systems is proposed.The considered MIMO pure-feedback nonlinear system contains input and output constraints,completely unknown nonlinear functions and time-varying external disturbances.The unknown nonlinear functions representing system uncertainties are identified via radial basis function neural networks(RBFNNs).Then,the Nussbaum function is utilized to deal with the nonlinearity issue caused by the input saturation.To prevent system outputs from violating prescribed constraints,the barrier Lyapunov functions(BLFs)are introduced.Also,a switched disturbance observer is designed to make the time-varying external disturbances estimable.Based on the backstepping recursive design technique and the Lyapunov stability theory,the developed control method is verified applicable to ensure the boundedness of all signals in the closed-loop system and make the system output track given reference signals well.Finally,a numerical simulation is given to demonstrate the effectiveness of the proposed control method.