Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studi...Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.展开更多
The paper is focused on the application of artificial neural networks (ANN) in predicting the natural frequency of laminated composite plates under clamped boundary condition. For training and testing of the ANN model...The paper is focused on the application of artificial neural networks (ANN) in predicting the natural frequency of laminated composite plates under clamped boundary condition. For training and testing of the ANN model, a number of finite element analyses have been carried out using D-optimal design in the design of experiments (DOE) by varying the fibre orientations, –45?, 0?, 45? and 90?. The composite plate is modeled using linear layered structural shell element. The natural frequencies were found by analyses which were done by finite element (FE) analysis software. The ANN model has been developed using multilayer perceptron (MLP) back propagation algorithm. The adequacy of the developed model is verified by coefficient of determination (R). It was found that the R2 (R: coefficient of determination) values are 1 and 0.998 for train and test data respectively. The results showed that, the training algorithm of back propagation was sufficient enough in predicting the natural frequency of laminated composite plates. To judge the ability and efficiency of the developed ANN model, absolute relative error has been used. The results predicted by ANN are in very good agreement with the finite element (FE) results. Consequently, the D-optimal design and ANN are shown to be effective in predicting the natural frequency of laminated composite plates.展开更多
RFID technology is one of the important technologies to determine the object locations. Distances are calculated with respect to calibration curves of RSSI amplitudes. The aim of this study is to determine the 2D posi...RFID technology is one of the important technologies to determine the object locations. Distances are calculated with respect to calibration curves of RSSI amplitudes. The aim of this study is to determine the 2D position of mobile objects in the indoor environment. The importance of the work is to show that localization by using Artificial Neural Network plus Kalman Filtering is more accurate than using classical KNN method. An indoor wireless sensing network is established with strategically stationed RFID transmitter nodes and a mobile object with a RFID receiver node. A fingerprint map is generated and K-Nearest Neighbourhood algorithm (KNN) is deployed to calculate the object locations. Fingerprint coordinates and RSS values received at these coordinates are deployed to set up an Artificial Neural Network (ANN). This network is used to determine the unknown object locations by using RSS values received at these locations. The accuracy of object localization is found to be better with ANN technique than KNN technique. Object coordinates, determined with ANN technique, are subjected to Kalman filtering. The results show that localization accuracies are improved and localization error distances are reduced by 46% with the deployment of ANN + Kalman Filtering.展开更多
基金Otokar Otomotiv ve Savunma Sanayi A.S. for the financial support
文摘Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.
文摘The paper is focused on the application of artificial neural networks (ANN) in predicting the natural frequency of laminated composite plates under clamped boundary condition. For training and testing of the ANN model, a number of finite element analyses have been carried out using D-optimal design in the design of experiments (DOE) by varying the fibre orientations, –45?, 0?, 45? and 90?. The composite plate is modeled using linear layered structural shell element. The natural frequencies were found by analyses which were done by finite element (FE) analysis software. The ANN model has been developed using multilayer perceptron (MLP) back propagation algorithm. The adequacy of the developed model is verified by coefficient of determination (R). It was found that the R2 (R: coefficient of determination) values are 1 and 0.998 for train and test data respectively. The results showed that, the training algorithm of back propagation was sufficient enough in predicting the natural frequency of laminated composite plates. To judge the ability and efficiency of the developed ANN model, absolute relative error has been used. The results predicted by ANN are in very good agreement with the finite element (FE) results. Consequently, the D-optimal design and ANN are shown to be effective in predicting the natural frequency of laminated composite plates.
文摘RFID technology is one of the important technologies to determine the object locations. Distances are calculated with respect to calibration curves of RSSI amplitudes. The aim of this study is to determine the 2D position of mobile objects in the indoor environment. The importance of the work is to show that localization by using Artificial Neural Network plus Kalman Filtering is more accurate than using classical KNN method. An indoor wireless sensing network is established with strategically stationed RFID transmitter nodes and a mobile object with a RFID receiver node. A fingerprint map is generated and K-Nearest Neighbourhood algorithm (KNN) is deployed to calculate the object locations. Fingerprint coordinates and RSS values received at these coordinates are deployed to set up an Artificial Neural Network (ANN). This network is used to determine the unknown object locations by using RSS values received at these locations. The accuracy of object localization is found to be better with ANN technique than KNN technique. Object coordinates, determined with ANN technique, are subjected to Kalman filtering. The results show that localization accuracies are improved and localization error distances are reduced by 46% with the deployment of ANN + Kalman Filtering.