期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A unified Minorization-Maximization approach for estimation of general mixture models
1
作者 HUANG Xi-fen LIU Deng-ge +1 位作者 ZHOU Yun-peng ZHU Fei 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期343-362,共20页
The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high... The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices. 展开更多
关键词 MM algorithm mixed distribution model parameter estimation assembly decomposition tech-nology parameter separation
下载PDF
Heteroscedastic Laplace mixture of experts regression models and applications
2
作者 WU Liu-cang ZHANG Shu-yu LI Shuang-shuang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第1期60-69,共10页
Mixture of Experts(MoE)regression models are widely studied in statistics and machine learning for modeling heterogeneity in data for regression,clustering and classification.Laplace distribution is one of the most im... Mixture of Experts(MoE)regression models are widely studied in statistics and machine learning for modeling heterogeneity in data for regression,clustering and classification.Laplace distribution is one of the most important statistical tools to analyze thick and tail data.Laplace Mixture of Linear Experts(LMoLE)regression models are based on the Laplace distribution which is more robust.Similar to modelling variance parameter in a homogeneous population,we propose and study a new novel class of models:heteroscedastic Laplace mixture of experts regression models to analyze the heteroscedastic data coming from a heterogeneous population in this paper.The issues of maximum likelihood estimation are addressed.In particular,Minorization-Maximization(MM)algorithm for estimating the regression parameters is developed.Properties of the estimators of the regression coefficients are evaluated through Monte Carlo simulations.Results from the analysis of two real data sets are presented. 展开更多
关键词 mixture of experts regression models heteroscedastic mixture of experts regression models Laplace distribution MM algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部