期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The Thermal and Mechanical Properties of Ultra-High Molecular Weight Polyethylene/Montmorillonite (UHMWPE/MMT) Nanocomposites Hybrid Gel Using Pressure-Induced Flow (PIF) Processing
1
作者 BABIKER Musa E 张森 +3 位作者 冯小玲 王广成 汤轶飞 余木火 《Journal of Donghua University(English Edition)》 EI CAS 2011年第2期158-164,共7页
Hybrid organic-inorganic polymer nanocomposites incorporating organically modified montmorillonite (MMT) and ultra-high molecular weight polyethylene (UHMWPE) were examined. UHMWPE/MMT hybrid nanocomposites were prepa... Hybrid organic-inorganic polymer nanocomposites incorporating organically modified montmorillonite (MMT) and ultra-high molecular weight polyethylene (UHMWPE) were examined. UHMWPE/MMT hybrid nanocomposites were prepared using gel and pressure-induced flow(PIF) processing methods at a gel weight concentration of 8% UHMWPE with various organoclay contents (0, 0.4, 0.8, 1.2, and 1.6 parts per hundred parts). The interlayer properties of the nanocomposites were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The thermal and mechanical interfacial properties of the nanocomposites were investigated through thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and the use of a universal test machine (UTM). TEM indicates that the nanocomposites are formed upon dispersion of MMT in the polymer matrix. From the DSC, TGA, and DMA results, we find that the thermal stability of the UHMWPE nanocomposites increases as the MMT content increases. The nanocomposites show higher tensile strengths than pure UHMWPE gel sheet. These findings indicate that the interfacial and mechanical properties are improved by the addition of MMT and PIF processing. 展开更多
关键词 UHMWPE/mmt clay nanocomposites gel processing pressure-induced flow PIF processing mechanical and thermal properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部