期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多重线性非参数化特征提取算法的人脸识别技术
1
作者 张向群 张旭 +1 位作者 鲍都都 鲍干都 《许昌学院学报》 CAS 2012年第5期69-71,共3页
针对人脸识别技术的特征提取方法存在不准确等问题,提出了基于张量空间模型的多重非参数化特征提取算法,给出了算法的基本原理,最后通过在ORL标准人脸数据库上的实验结果,验证了MNFA方法要明显优于MDA方法.
关键词 人脸识别 mnfa MDA
下载PDF
Enhanced Neuro-Fuzzy-Based Crop Ontology for Effective Information Retrieval
2
作者 K.Ezhilarasi G.Maria Kalavathy 《Computer Systems Science & Engineering》 SCIE EI 2022年第5期569-582,共14页
Ontology is the progression of interpreting the conceptions of the information domain for an assembly of handlers.Familiarizing ontology as information retrieval(IR)aids in augmenting the searching effects of user-req... Ontology is the progression of interpreting the conceptions of the information domain for an assembly of handlers.Familiarizing ontology as information retrieval(IR)aids in augmenting the searching effects of user-required relevant information.The crux of conventional keyword matching-related IR utilizes advanced algorithms for recovering facts from the Internet,mapping the connection between keywords and information,and categorizing the retrieval outcomes.The prevailing procedures for IR consume considerable time,and they could not recover information proficiently.In this study,through applying a modified neuro-fuzzy algorithm(MNFA),the IR time is mitigated,and the retrieval accuracy is enhanced for trouncing the above-stated downsides.The proposed method encompasses three phases:i)development of a crop ontology,ii)implementation of the IR system,and iii)processing of user query.In the initial phase,a crop ontology is developed and evaluated by gathering crop information.In the next phase,a hash tree is constructed using closed frequent patterns(CFPs),and MNFA is used to train the database.In the last phase,for a specified user query,CFP is calculated,and similarity assessment results are retrieved using the database.The performance of the proposed system is measured and compared with that of existing techniques.Experimental results demonstrate that the proposed MNFA has an accuracy of 92.77% for simple queries and 91.45% for complex queries. 展开更多
关键词 ONTOLOGY crop ontology information retrieval(IR) k-medoids algorithm neuro-fuzzy algorithm(NFA) modified NFA(mnfa)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部