In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical s...In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing.展开更多
Mobile ad hoc networks (MANETs) are autonomous and infrastructureless networks that support multi-hop wireless communications among mobile hosts. Providing global internet connectivity to MANETs is a strong trend nowa...Mobile ad hoc networks (MANETs) are autonomous and infrastructureless networks that support multi-hop wireless communications among mobile hosts. Providing global internet connectivity to MANETs is a strong trend nowadays, so the mobile hosts can enjoy the tremendous services of the Internet. In this paper, we present an asymmetrical approach that uses multiple Internet Gateways to provide MANETs nodes with Internet connectivity and access to the Internet’s resources. The rational utilization of all available Internet Gateways can meet the load of MANETs balance and reduce the latency of packets communication between MANETs and the Internet; this can be concluded from the results of the simulation experiments.展开更多
With the development of wireless mobile communication technology,the demand for wireless communication rate and frequency increases year by year.Existing wireless mobile communication frequency tends to be saturated,w...With the development of wireless mobile communication technology,the demand for wireless communication rate and frequency increases year by year.Existing wireless mobile communication frequency tends to be saturated,which demands for new solutions.Terahertz(THz)communication has great potential for the future mobile communications(Beyond 5G),and is also an important technique for the high data rate transmission in spatial information network.THz communication has great application prospects in military-civilian integration and coordinated development.In China,important breakthroughs have been achieved for the key techniques of THz high data rate communications,which is practically keeping up with the most advanced technological level in the world.Therefore,further intensifying efforts on the development of THz communication have the strategic importance for China in leading the development of future wireless communication techniques and the standardization process of Beyond 5G.This paper analyzes the performance of the MIMO channel in the Terahertz(THz)band and a discrete mathematical method is used to propose a novel channel model.Then,a channel capacity model is proposed by the combination of path loss and molecular absorption in the THz band based on the CSI at the receiver.Simulation results show that the integration of MIMO in the THz band gives better data rate and channel capacity as compared with a single channel.展开更多
In mobile IPv6 networks, the ping-pong type of movement brings about frequent handovers and thus increases signaling burden. This letter proposes a fast seamless handover scheme where the access router keeps the mobil...In mobile IPv6 networks, the ping-pong type of movement brings about frequent handovers and thus increases signaling burden. This letter proposes a fast seamless handover scheme where the access router keeps the mobile node's old reservation till the offline Count Down Timer (CDT) expires in order to reduce handover signaling and delay while the mobile node returns in a very short period of time. Based upon a pois son mobility model, an simple expression for CDT optimization is given out for the scheme to achieve the best cost performance of resource reservation.展开更多
A new mobile multicast scheme called mobility prediction based mobile multicast(MPBMM) was proposed. In MPBMM, when a mobile node (MN) roams among subnets during a multicast session, MN predicts the next subnet, to wh...A new mobile multicast scheme called mobility prediction based mobile multicast(MPBMM) was proposed. In MPBMM, when a mobile node (MN) roams among subnets during a multicast session, MN predicts the next subnet, to which MN will attach, by the information of its position and mobility speed, consequently speeds up the handoff procedure. Simulation results show that the proposed scheme can minimize the loss of multicast packets, reduce the delay of subnet handoff, decrease the frequency of multicast tree reconfiguration, and optimize the delivery path of multicast packets. When MN moves among subnets at different speeds (from 5 to 25 ms), the maximum loss ratio of multicast packets is less than0.2%, the maximum inter-arrival time of multicast packets is 117 ms, so the proposed scheme can meet the QoS requirements of real-time services. In addition, MPBMM can support the mobility of multicast source.展开更多
Performance evaluation shows that Hierarchical Mobile IPv6 (HMIPv6) cannot outperform standard Mobile IPv6 (MIPv6) in all scenarios. Thus, adaptive protocol selection under certain circumstances is desired. Moreover, ...Performance evaluation shows that Hierarchical Mobile IPv6 (HMIPv6) cannot outperform standard Mobile IPv6 (MIPv6) in all scenarios. Thus, adaptive protocol selection under certain circumstances is desired. Moreover, it is necessary to balance the load among different Mobility Anchor Points (MAPs). This paper proposes an efficient three-level hierarchical ar- chitecture for mobility management in HMIPv6 networks, in which a mobile node (MN) may register with either a higher/lower MAP or its home agent according to its speed and the number of connecting correspondent nodes (CNs). An admission control algorithm and a replacement algorithm are introduced to achieve load balancing between two MAP levels and among different MAPs within the same MAP level. Admission control is based on the number of CNs but not MNs that an MAP serves. In case there is no capacity for an MN, the MAP chooses an existing MN to be replaced. The replaced MN uses the MAP selection al- gorithm again to choose another mobility agent. Simulation results showed that the proposed scheme achieves better performance not only in reducing the signaling overhead, but also in load balancing among different MAPs.展开更多
A framework for end-to-end RSVP context transfer in Mobile IPv6(MIPv6) based on the architecture of F-HMIPv6 is proposed in this paper. The scheme provides an end-to-end RSVP context transfer for real-time application...A framework for end-to-end RSVP context transfer in Mobile IPv6(MIPv6) based on the architecture of F-HMIPv6 is proposed in this paper. The scheme provides an end-to-end RSVP context transfer for real-time applications to overcome the weakness of Context Transfer Protocol which can not meet the need of end-to-end QoS mechanisms because contexts are only transferred between Access Routers(ARs), therefore they can promptly get the same forwarding process, minimize the handover service disruption, and avoid initiating the end-to-end RSVP signaling from scratch after an MN performs handovers. It may also reduce the signaling overhead and handover latencies by adopting the F-HMIPv6architecture. The performance of the approach is compared with the re-initiating RSVP signaling to re-establish QoS states using network simulator, and the numerical results show that the scheme has the less latency and packet loss than that of the re-initiating approach.展开更多
Objective:It has been reported that the intravenous anesthetic propofol(PPF)has anti-inflammatory effects in vitro and in patients.The purpose of this study was to investigate whether PPF has anti-inflammatory effe...Objective:It has been reported that the intravenous anesthetic propofol(PPF)has anti-inflammatory effects in vitro and in patients.The purpose of this study was to investigate whether PPF has anti-inflammatory effects in lipopolysaccharide(LPS)-induced septic shock by inhibiting the induction of pro-inflammatory cytokinesinterleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)and high mobility group box 1(HMGB1)in rats.Methods:Thirty six male Wistar rats were randomly assigned to one of three groups(control group,PPF+LPS group and LPS group;n=12 per group).Control group rats received a 0.9%NaCl solution(NS)by the tail vein.The PPF+ LPS group rats received PPF(10 mg/kg bolus,followed by infusion at 10 mg/(kg·h)through a femoral vein catheter)1 h before LPS(7.5 mg/kg)administration via the tail vein.The LPS group rats received injection of LPS(7.5 mg/kg)via the tail vein.Hemodynamic effects were recorded as well as mortality rates,and plasma cytokine concentrations(TNF-α,IL-6,HMGB1)were measured for the 24-h observation period.Results:The mean arterial pressure and heart rate of the PPF+LPS group were more stable than those of the LPS group.The mortality at 24 h after the administration of the LPS injection was much higher in the LPS group(58.3%)compared to the PPF+ LPS group(25.0%).Plasma concentrations of cytokines(IL-6 and TNF-α)and HMGB1 were significantly reduced in the PPF+LPS group compared to the LPS group(P0.05).Conclusion:Pretreatment with PPF reduced the mortality rate of rats and attenuated the pro-inflammatory cytokine responses in an endotoxin shock model through an anti-inflammatory action inhibiting induction of HMGB1.展开更多
In 5G networks,optimization of antenna beam weights of base stations has become the key application of AI for network optimization.For 6G,higher frequency bands and much denser cells are expected,and the importance of...In 5G networks,optimization of antenna beam weights of base stations has become the key application of AI for network optimization.For 6G,higher frequency bands and much denser cells are expected,and the importance of automatic and accurate beamforming assisted by AI will become more prominent.In existing network,servers are“patched”to network equipment to act as a centralized brain for model training and inference leading to high transmission overhead,large inference latency and potential risks of data security.Decentralized architectures have been proposed to achieve flexible parameter configuration and fast local response,but it is inefficient in collecting and sharing global information among base stations.In this paper,we propose a novel solution based on a collaborative cloud edge architecture for multi-cell joint beamforming optimization.We analyze the performance and costs of the proposed solution with two other architectural solutions by simulation.Compared with the centralized solution,our solution improves prediction accuracy by 24.66%,and reduces storage cost by 83.82%.Compared with the decentralized solution,our solution improves prediction accuracy by 68.26%,and improves coverage performance by 0.4 dB.At last,the future research work is prospected.展开更多
Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence ...Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence of the sixth generation of mobile communications technology(6G).However,the existing studies just focus on the spatio-temporal modeling of traffic data of single network service,such as short message,call,or Internet.It is not conducive to accurate prediction of traffic data,characterised by diverse network service,spatio-temporality and supersize volume.To address this issue,a novel multi-task deep learning framework is developed for citywide cellular network traffic prediction.Functionally,this framework mainly consists of a dual modular feature sharing layer and a multi-task learning layer(DMFS-MT).The former aims at mining long-term spatio-temporal dependencies and local spatio-temporal fluctuation trends in data,respectively,via a new combination of convolutional gated recurrent unit(ConvGRU)and 3-dimensional convolutional neural network(3D-CNN).For the latter,each task is performed for predicting service-specific traffic data based on a fully connected network.On the real-world Telecom Italia dataset,simulation results demonstrate the effectiveness of our proposal through prediction performance measure,spatial pattern comparison and statistical distribution verification.展开更多
Proxy Mobile IPv6 (PMIPv6) is designed to provide a network-based localized mobility management protocol, but it does not handle the global mobility of hosts. In this paper, we propose a location management scheme bas...Proxy Mobile IPv6 (PMIPv6) is designed to provide a network-based localized mobility management protocol, but it does not handle the global mobility of hosts. In this paper, we propose a location management scheme based on Domain Name System (DNS) for PMIPv6 which can support global mobility by using DNS as a location manager. In addition, to support large numbers of mobile terminals and enhance network scalability a paging extension scheme is introduced to PMIPv6. To evaluate the proposed location management scheme, we establish an analytical model, formulate the location update cost and the paging cost, and analyze the influence of the different factors on the total signaling cost. The performance results show that our proposed scheme outperforms the basic PMIPv6 under various parameters in terms of reducing the signaling overhead and the proposed scheme reduces signaling overhead compared to the basic PMIPv6.展开更多
In the paper,we propose a fuzzy logic controller system to be implemented for smart mobility management in the 5G wireless communication network.Mobility management is considered as a main issue for all-IP mobile netw...In the paper,we propose a fuzzy logic controller system to be implemented for smart mobility management in the 5G wireless communication network.Mobility management is considered as a main issue for all-IP mobile networks future generation.As a network-based mobility management protocol,Internet Engineering Task Force developed the Proxy Mobile IPv6(PMIPv6)in order to support the mobility of IP devices,and many other results were presented to reduce latency handover and the amount of PMIPv6 signaling,but it is not enough for the application needs in realtime.The present paper describes an approach based on the IEEE 802.21 Media Independent Handover(MIH)standard and PMIPv6,so we present a new vertical handover algorithm for anticipating handover process efficiently.Our object is to propose a smart mobility management that contribute in 5G wireless communication system network operating functions.Two proposed dynamic thresholds were successfully made to guaranty process triggering,and a new primitive MIH is proposed for signaling a needed handover to be done.Simulation results demonstrate a significant reduction of the handover delay,packet loss,handover blocking probability and signaling overhead.Simulation results and tests are accomplished.展开更多
文摘In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing.
文摘Mobile ad hoc networks (MANETs) are autonomous and infrastructureless networks that support multi-hop wireless communications among mobile hosts. Providing global internet connectivity to MANETs is a strong trend nowadays, so the mobile hosts can enjoy the tremendous services of the Internet. In this paper, we present an asymmetrical approach that uses multiple Internet Gateways to provide MANETs nodes with Internet connectivity and access to the Internet’s resources. The rational utilization of all available Internet Gateways can meet the load of MANETs balance and reduce the latency of packets communication between MANETs and the Internet; this can be concluded from the results of the simulation experiments.
基金Hallym University Research Fund,2019(HRF-201905-013).
文摘With the development of wireless mobile communication technology,the demand for wireless communication rate and frequency increases year by year.Existing wireless mobile communication frequency tends to be saturated,which demands for new solutions.Terahertz(THz)communication has great potential for the future mobile communications(Beyond 5G),and is also an important technique for the high data rate transmission in spatial information network.THz communication has great application prospects in military-civilian integration and coordinated development.In China,important breakthroughs have been achieved for the key techniques of THz high data rate communications,which is practically keeping up with the most advanced technological level in the world.Therefore,further intensifying efforts on the development of THz communication have the strategic importance for China in leading the development of future wireless communication techniques and the standardization process of Beyond 5G.This paper analyzes the performance of the MIMO channel in the Terahertz(THz)band and a discrete mathematical method is used to propose a novel channel model.Then,a channel capacity model is proposed by the combination of path loss and molecular absorption in the THz band based on the CSI at the receiver.Simulation results show that the integration of MIMO in the THz band gives better data rate and channel capacity as compared with a single channel.
基金Supported by the National Natural Science Foundation of China (No.60202005).
文摘In mobile IPv6 networks, the ping-pong type of movement brings about frequent handovers and thus increases signaling burden. This letter proposes a fast seamless handover scheme where the access router keeps the mobile node's old reservation till the offline Count Down Timer (CDT) expires in order to reduce handover signaling and delay while the mobile node returns in a very short period of time. Based upon a pois son mobility model, an simple expression for CDT optimization is given out for the scheme to achieve the best cost performance of resource reservation.
基金Project (60573127) supported by the National Natural Science Foundation of ChinaProject (20040533036) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China+1 种基金Project (05JJ40131) supported by the Natural Science Foundation of Hunan Province, ChinaProject(03C326) supported by the Natural Science Foundation of Education Department of Hunan Province, China
文摘A new mobile multicast scheme called mobility prediction based mobile multicast(MPBMM) was proposed. In MPBMM, when a mobile node (MN) roams among subnets during a multicast session, MN predicts the next subnet, to which MN will attach, by the information of its position and mobility speed, consequently speeds up the handoff procedure. Simulation results show that the proposed scheme can minimize the loss of multicast packets, reduce the delay of subnet handoff, decrease the frequency of multicast tree reconfiguration, and optimize the delivery path of multicast packets. When MN moves among subnets at different speeds (from 5 to 25 ms), the maximum loss ratio of multicast packets is less than0.2%, the maximum inter-arrival time of multicast packets is 117 ms, so the proposed scheme can meet the QoS requirements of real-time services. In addition, MPBMM can support the mobility of multicast source.
基金Project supported by the National Natural Science Foundation of China (Nos. 60662003 and 60462003), the Huawei Funds for Scienceand Technology (No. YJCB2004025SP) and the Science and Tech-nology Plan of Zhejiang Province (No. 2005C21002), China
文摘Performance evaluation shows that Hierarchical Mobile IPv6 (HMIPv6) cannot outperform standard Mobile IPv6 (MIPv6) in all scenarios. Thus, adaptive protocol selection under certain circumstances is desired. Moreover, it is necessary to balance the load among different Mobility Anchor Points (MAPs). This paper proposes an efficient three-level hierarchical ar- chitecture for mobility management in HMIPv6 networks, in which a mobile node (MN) may register with either a higher/lower MAP or its home agent according to its speed and the number of connecting correspondent nodes (CNs). An admission control algorithm and a replacement algorithm are introduced to achieve load balancing between two MAP levels and among different MAPs within the same MAP level. Admission control is based on the number of CNs but not MNs that an MAP serves. In case there is no capacity for an MN, the MAP chooses an existing MN to be replaced. The replaced MN uses the MAP selection al- gorithm again to choose another mobility agent. Simulation results showed that the proposed scheme achieves better performance not only in reducing the signaling overhead, but also in load balancing among different MAPs.
文摘A framework for end-to-end RSVP context transfer in Mobile IPv6(MIPv6) based on the architecture of F-HMIPv6 is proposed in this paper. The scheme provides an end-to-end RSVP context transfer for real-time applications to overcome the weakness of Context Transfer Protocol which can not meet the need of end-to-end QoS mechanisms because contexts are only transferred between Access Routers(ARs), therefore they can promptly get the same forwarding process, minimize the handover service disruption, and avoid initiating the end-to-end RSVP signaling from scratch after an MN performs handovers. It may also reduce the signaling overhead and handover latencies by adopting the F-HMIPv6architecture. The performance of the approach is compared with the re-initiating RSVP signaling to re-establish QoS states using network simulator, and the numerical results show that the scheme has the less latency and packet loss than that of the re-initiating approach.
文摘Objective:It has been reported that the intravenous anesthetic propofol(PPF)has anti-inflammatory effects in vitro and in patients.The purpose of this study was to investigate whether PPF has anti-inflammatory effects in lipopolysaccharide(LPS)-induced septic shock by inhibiting the induction of pro-inflammatory cytokinesinterleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)and high mobility group box 1(HMGB1)in rats.Methods:Thirty six male Wistar rats were randomly assigned to one of three groups(control group,PPF+LPS group and LPS group;n=12 per group).Control group rats received a 0.9%NaCl solution(NS)by the tail vein.The PPF+ LPS group rats received PPF(10 mg/kg bolus,followed by infusion at 10 mg/(kg·h)through a femoral vein catheter)1 h before LPS(7.5 mg/kg)administration via the tail vein.The LPS group rats received injection of LPS(7.5 mg/kg)via the tail vein.Hemodynamic effects were recorded as well as mortality rates,and plasma cytokine concentrations(TNF-α,IL-6,HMGB1)were measured for the 24-h observation period.Results:The mean arterial pressure and heart rate of the PPF+LPS group were more stable than those of the LPS group.The mortality at 24 h after the administration of the LPS injection was much higher in the LPS group(58.3%)compared to the PPF+ LPS group(25.0%).Plasma concentrations of cytokines(IL-6 and TNF-α)and HMGB1 were significantly reduced in the PPF+LPS group compared to the LPS group(P0.05).Conclusion:Pretreatment with PPF reduced the mortality rate of rats and attenuated the pro-inflammatory cytokine responses in an endotoxin shock model through an anti-inflammatory action inhibiting induction of HMGB1.
基金supported by the National Key Research and Development Program of China(2020YFB1806800)funded by Beijing University of Posts and Telecommuns(BUPT)China Mobile Research Institute Joint Innoviation Center。
文摘In 5G networks,optimization of antenna beam weights of base stations has become the key application of AI for network optimization.For 6G,higher frequency bands and much denser cells are expected,and the importance of automatic and accurate beamforming assisted by AI will become more prominent.In existing network,servers are“patched”to network equipment to act as a centralized brain for model training and inference leading to high transmission overhead,large inference latency and potential risks of data security.Decentralized architectures have been proposed to achieve flexible parameter configuration and fast local response,but it is inefficient in collecting and sharing global information among base stations.In this paper,we propose a novel solution based on a collaborative cloud edge architecture for multi-cell joint beamforming optimization.We analyze the performance and costs of the proposed solution with two other architectural solutions by simulation.Compared with the centralized solution,our solution improves prediction accuracy by 24.66%,and reduces storage cost by 83.82%.Compared with the decentralized solution,our solution improves prediction accuracy by 68.26%,and improves coverage performance by 0.4 dB.At last,the future research work is prospected.
基金supported in part by the Science and Technology Project of Hebei Education Department(No.ZD2021088)in part by the S&T Major Project of the Science and Technology Ministry of China(No.2017YFE0135700)。
文摘Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence of the sixth generation of mobile communications technology(6G).However,the existing studies just focus on the spatio-temporal modeling of traffic data of single network service,such as short message,call,or Internet.It is not conducive to accurate prediction of traffic data,characterised by diverse network service,spatio-temporality and supersize volume.To address this issue,a novel multi-task deep learning framework is developed for citywide cellular network traffic prediction.Functionally,this framework mainly consists of a dual modular feature sharing layer and a multi-task learning layer(DMFS-MT).The former aims at mining long-term spatio-temporal dependencies and local spatio-temporal fluctuation trends in data,respectively,via a new combination of convolutional gated recurrent unit(ConvGRU)and 3-dimensional convolutional neural network(3D-CNN).For the latter,each task is performed for predicting service-specific traffic data based on a fully connected network.On the real-world Telecom Italia dataset,simulation results demonstrate the effectiveness of our proposal through prediction performance measure,spatial pattern comparison and statistical distribution verification.
基金supported in part by the National Basic Research Program of China ("973 program") under contract No. 2007CB307101 and No. 2007CB307106in part by the Program of Introducing Talents of Discipline to Universities ("111 Project") under contract No. B08002+1 种基金in part by the Cultivation Fund of the Key Scientifi c and Technical Innovation Project, Ministry of Education of China under contract No. 706005in part by the Ph.D. Student Scientifi c Research Innovation Fund of Beijing Jiaotong University (No.141057522)
文摘Proxy Mobile IPv6 (PMIPv6) is designed to provide a network-based localized mobility management protocol, but it does not handle the global mobility of hosts. In this paper, we propose a location management scheme based on Domain Name System (DNS) for PMIPv6 which can support global mobility by using DNS as a location manager. In addition, to support large numbers of mobile terminals and enhance network scalability a paging extension scheme is introduced to PMIPv6. To evaluate the proposed location management scheme, we establish an analytical model, formulate the location update cost and the paging cost, and analyze the influence of the different factors on the total signaling cost. The performance results show that our proposed scheme outperforms the basic PMIPv6 under various parameters in terms of reducing the signaling overhead and the proposed scheme reduces signaling overhead compared to the basic PMIPv6.
文摘In the paper,we propose a fuzzy logic controller system to be implemented for smart mobility management in the 5G wireless communication network.Mobility management is considered as a main issue for all-IP mobile networks future generation.As a network-based mobility management protocol,Internet Engineering Task Force developed the Proxy Mobile IPv6(PMIPv6)in order to support the mobility of IP devices,and many other results were presented to reduce latency handover and the amount of PMIPv6 signaling,but it is not enough for the application needs in realtime.The present paper describes an approach based on the IEEE 802.21 Media Independent Handover(MIH)standard and PMIPv6,so we present a new vertical handover algorithm for anticipating handover process efficiently.Our object is to propose a smart mobility management that contribute in 5G wireless communication system network operating functions.Two proposed dynamic thresholds were successfully made to guaranty process triggering,and a new primitive MIH is proposed for signaling a needed handover to be done.Simulation results demonstrate a significant reduction of the handover delay,packet loss,handover blocking probability and signaling overhead.Simulation results and tests are accomplished.