Increasing water demands,especially in arid and semi-arid regions,continuously exacerbate groundwater as the only reliable water resources in these regions.Samalqan watershed,Iran,is a groundwater-based irrigation wat...Increasing water demands,especially in arid and semi-arid regions,continuously exacerbate groundwater as the only reliable water resources in these regions.Samalqan watershed,Iran,is a groundwater-based irrigation watershed,so that increased aquifer extraction,has caused serious groundwater depletion.So that the catchment consists of surface water,the management of these resources is essential in order to increase the groundwater recharge.Due to the existence of rivers,the low thickness of the alluvial sediments,groundwater level fluctuations and high uncertainty in the calculation of hydrodynamic coefficients in the watershed,the SWAT and MODFLOW models were used to assess the impact of irrigation return flow on groundwater recharge and the hydrological components of the basin.For this purpose,the irrigation operation tool in the SWAT model was utilized to determine the fixed amounts and time of irrigation for each HRU(Hydrological Response Unit)on the specified day.Since the study area has pressing challenges related to water deficit and sparsely gauged,therefore,this investigation looks actual for regional scale analysis.Model evaluation criteria,RMSE and NRMSE for the simulated groundwater level were 1.8 m and 1.1%respectively.Also,the simulation of surface water flow at the basin outlet,provided satisfactory prediction(R^(2)=0.92,NSE=0.85).Results showed that,the irrigation has affected the surface and groundwater interactions in the watershed,where agriculture heavily depends on irrigation.Annually 11.64 Mm3 water entered to the aquifer by surface recharge(precipitation,irrigation),transmission loss from river and recharge wells 5.8 Mm3 and ground water boundary flow(annually 20.5 Mm^(3)).Water output in the watershed included ground water extraction and groundwater return flow(annually 46.4 Mm^(3))and ground water boundary flow(annually 0.68 Mm^(3)).Overally,the groundwater storage has decreased by 9.14 Mm3 annually in Samalqan aquifer.This method can be applied to simulate the effects of surface water fluxes to groundwater recharge and river-aquifer interaction for areas with stressed aquifers where interaction between surface and groundwater cannot be easily assessed.展开更多
The managed recharge of groundwater is a stable and newfound technique which has already produced successful results and is expected to solve many of the problems of water resources, particularly in arid and semiarid ...The managed recharge of groundwater is a stable and newfound technique which has already produced successful results and is expected to solve many of the problems of water resources, particularly in arid and semiarid areas. The aquifer artificial recharge is considered as a strategy for the improvement and development of groundwater resources and their storage to compensate for the damage to them. In this regard, the advanced models of groundwater offer suitable tools for the management and assessment of aquifers. The main objective of this research is Simulation of Gotvand Plain aquifer using MODFLOW code of GMS software is the primary objective of this research. The other objective is assessing the artificial recharge project of Abbid-Sarbishe located in north of Gotvand. For this purpose, the study area was discretized in GMS software and the initial and boundary conditions were specified. Then, the model was calibrated from September 2009 to August 2010 in an unsteady state during 12 stress periods. After the optimization of hydrogeologic parameters, the model was validated from September 2009 to August 2010 and then it was used to assess the artificial recharge. By analyzing the water budget model, the behavior of piezometers and the observed data, the hydraulic of groundwater was evaluated. The results indicate that artificial recharge has been effective in the western parts of the project and the most effective recharge has occurred during 2005-2006 and 2006-2007 around the piezometer G19. This project has a positive effect on the aquifer, but due to seasonal water-flood spreading, sedimentation, and drought in the past years, its effect is not sufficient.展开更多
The origin and movement of groundwater are the fundamental questions that address both the temporal and spatial aspects of ground water run and water supply related issues in hydrological systems.As groundwater flows ...The origin and movement of groundwater are the fundamental questions that address both the temporal and spatial aspects of ground water run and water supply related issues in hydrological systems.As groundwater flows through an aquifer,its composition and temperature may variation dependent on the aquifer condition through which it flows.Thus,hydrologic investigations can also provide useful information about the subsurface geology of a region.But because such studies investigate processes that follow under the Earth's shallow,obtaining the information necessary to answer these questions is not continuously easy.Springs,which discharge groundwater table directly,afford to study subsurface hydrogeological processes.The present study of estimation of aquifer factors such as transmissivity(T)and storativity(S)are vital for the evaluation of groundwater resources.There are several methods to estimate the accurate aquifer parameters(i.e.hydrograph analysis,pumping test,etc.).In initial days,these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory.The simultaneous information on the hydraulic behavior of the well(borehole)that provides on this method,the reservoir and the reservoir boundaries,are important for efficient aquifer and well data management and analysis.The most common in-situ test is pumping test performed on wells,which involves the measurement of the fall and increase of groundwater level with respect to time.The alteration in groundwater level(drawdown/recovery)is caused due to pumping of water from the well.Theis(1935)was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer.It is essential to know the transmissivity(T=Kb,where b is the aquifer thickness;pumping flow rate,Q=TW(dh/dl)flow through an aquifer)and storativity(confined aquifer:S=bS_s,unconfined:S=S_y),for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer.The determination of aquifer's parameters is an important basis for groundwater resources evaluation,numerical simulation,development and protection as well as scientific management.For determining aquifer's parameters,pumping test is a main method.A case study shows that these techniques have been fast speed and high correctness.The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.展开更多
As numerical modeling is an effective tool for managing groundwater resources and predicting future responses, in this study, the author has intended to assess groundwater flow through Modflow 6 and Model Muse into Po...As numerical modeling is an effective tool for managing groundwater resources and predicting future responses, in this study, the author has intended to assess groundwater flow through Modflow 6 and Model Muse into Pointe-Noire coastal aquifers. The results showed that the fourth scenario has the biggest effect on the drawdown and seawater intrusion extent. Different parameters including evapotranspiration, recharge, model boundary, etc. were adjusted to run the model. The fourth scenario with the highest pumping rate value caused a slight increase of head values over the values simulated.展开更多
In this work, most important problems related to model calibration have been assessed using MODFLOW. Particular emphasis is given to the Upper Awash river basin where many boreholes have been drilled for municipal and...In this work, most important problems related to model calibration have been assessed using MODFLOW. Particular emphasis is given to the Upper Awash river basin where many boreholes have been drilled for municipal and industrial uses compared with other regions in Ethiopia. Static Water Level (SWL) records from water supply wells drilled for about 32 years in the Upper Awash basin is considered to illustrate the commonly used groundwater flow model calibration procedures and associated problems. The assumptions made in the modeling procedures to use SWL data collected over many years from water supply boreholes to calibrate steady state models is too much of an assumption. Alternatives on steady and pseudo transient model calibration approaches in data scarce areas based on logical assumptions and reasonable representation of groundwater systems has been suggested. Hence, numerical groundwater flow models may play the expected key role for the sustainable groundwater resource management of the country, which is solving practical ground-water related problems.展开更多
文摘Increasing water demands,especially in arid and semi-arid regions,continuously exacerbate groundwater as the only reliable water resources in these regions.Samalqan watershed,Iran,is a groundwater-based irrigation watershed,so that increased aquifer extraction,has caused serious groundwater depletion.So that the catchment consists of surface water,the management of these resources is essential in order to increase the groundwater recharge.Due to the existence of rivers,the low thickness of the alluvial sediments,groundwater level fluctuations and high uncertainty in the calculation of hydrodynamic coefficients in the watershed,the SWAT and MODFLOW models were used to assess the impact of irrigation return flow on groundwater recharge and the hydrological components of the basin.For this purpose,the irrigation operation tool in the SWAT model was utilized to determine the fixed amounts and time of irrigation for each HRU(Hydrological Response Unit)on the specified day.Since the study area has pressing challenges related to water deficit and sparsely gauged,therefore,this investigation looks actual for regional scale analysis.Model evaluation criteria,RMSE and NRMSE for the simulated groundwater level were 1.8 m and 1.1%respectively.Also,the simulation of surface water flow at the basin outlet,provided satisfactory prediction(R^(2)=0.92,NSE=0.85).Results showed that,the irrigation has affected the surface and groundwater interactions in the watershed,where agriculture heavily depends on irrigation.Annually 11.64 Mm3 water entered to the aquifer by surface recharge(precipitation,irrigation),transmission loss from river and recharge wells 5.8 Mm3 and ground water boundary flow(annually 20.5 Mm^(3)).Water output in the watershed included ground water extraction and groundwater return flow(annually 46.4 Mm^(3))and ground water boundary flow(annually 0.68 Mm^(3)).Overally,the groundwater storage has decreased by 9.14 Mm3 annually in Samalqan aquifer.This method can be applied to simulate the effects of surface water fluxes to groundwater recharge and river-aquifer interaction for areas with stressed aquifers where interaction between surface and groundwater cannot be easily assessed.
文摘The managed recharge of groundwater is a stable and newfound technique which has already produced successful results and is expected to solve many of the problems of water resources, particularly in arid and semiarid areas. The aquifer artificial recharge is considered as a strategy for the improvement and development of groundwater resources and their storage to compensate for the damage to them. In this regard, the advanced models of groundwater offer suitable tools for the management and assessment of aquifers. The main objective of this research is Simulation of Gotvand Plain aquifer using MODFLOW code of GMS software is the primary objective of this research. The other objective is assessing the artificial recharge project of Abbid-Sarbishe located in north of Gotvand. For this purpose, the study area was discretized in GMS software and the initial and boundary conditions were specified. Then, the model was calibrated from September 2009 to August 2010 in an unsteady state during 12 stress periods. After the optimization of hydrogeologic parameters, the model was validated from September 2009 to August 2010 and then it was used to assess the artificial recharge. By analyzing the water budget model, the behavior of piezometers and the observed data, the hydraulic of groundwater was evaluated. The results indicate that artificial recharge has been effective in the western parts of the project and the most effective recharge has occurred during 2005-2006 and 2006-2007 around the piezometer G19. This project has a positive effect on the aquifer, but due to seasonal water-flood spreading, sedimentation, and drought in the past years, its effect is not sufficient.
文摘The origin and movement of groundwater are the fundamental questions that address both the temporal and spatial aspects of ground water run and water supply related issues in hydrological systems.As groundwater flows through an aquifer,its composition and temperature may variation dependent on the aquifer condition through which it flows.Thus,hydrologic investigations can also provide useful information about the subsurface geology of a region.But because such studies investigate processes that follow under the Earth's shallow,obtaining the information necessary to answer these questions is not continuously easy.Springs,which discharge groundwater table directly,afford to study subsurface hydrogeological processes.The present study of estimation of aquifer factors such as transmissivity(T)and storativity(S)are vital for the evaluation of groundwater resources.There are several methods to estimate the accurate aquifer parameters(i.e.hydrograph analysis,pumping test,etc.).In initial days,these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory.The simultaneous information on the hydraulic behavior of the well(borehole)that provides on this method,the reservoir and the reservoir boundaries,are important for efficient aquifer and well data management and analysis.The most common in-situ test is pumping test performed on wells,which involves the measurement of the fall and increase of groundwater level with respect to time.The alteration in groundwater level(drawdown/recovery)is caused due to pumping of water from the well.Theis(1935)was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer.It is essential to know the transmissivity(T=Kb,where b is the aquifer thickness;pumping flow rate,Q=TW(dh/dl)flow through an aquifer)and storativity(confined aquifer:S=bS_s,unconfined:S=S_y),for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer.The determination of aquifer's parameters is an important basis for groundwater resources evaluation,numerical simulation,development and protection as well as scientific management.For determining aquifer's parameters,pumping test is a main method.A case study shows that these techniques have been fast speed and high correctness.The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.
文摘As numerical modeling is an effective tool for managing groundwater resources and predicting future responses, in this study, the author has intended to assess groundwater flow through Modflow 6 and Model Muse into Pointe-Noire coastal aquifers. The results showed that the fourth scenario has the biggest effect on the drawdown and seawater intrusion extent. Different parameters including evapotranspiration, recharge, model boundary, etc. were adjusted to run the model. The fourth scenario with the highest pumping rate value caused a slight increase of head values over the values simulated.
文摘In this work, most important problems related to model calibration have been assessed using MODFLOW. Particular emphasis is given to the Upper Awash river basin where many boreholes have been drilled for municipal and industrial uses compared with other regions in Ethiopia. Static Water Level (SWL) records from water supply wells drilled for about 32 years in the Upper Awash basin is considered to illustrate the commonly used groundwater flow model calibration procedures and associated problems. The assumptions made in the modeling procedures to use SWL data collected over many years from water supply boreholes to calibrate steady state models is too much of an assumption. Alternatives on steady and pseudo transient model calibration approaches in data scarce areas based on logical assumptions and reasonable representation of groundwater systems has been suggested. Hence, numerical groundwater flow models may play the expected key role for the sustainable groundwater resource management of the country, which is solving practical ground-water related problems.