Semiconductive two dimensional(2D)materials have attracted significant research attention due to their rich band structures and promising potential for next-generation electrical devices.In this work,we investigate th...Semiconductive two dimensional(2D)materials have attracted significant research attention due to their rich band structures and promising potential for next-generation electrical devices.In this work,we investigate the MoS2 field-effect transistors(FETs)with a dual-gated(DG)architecture,which consists of symmetrical thickness for back gate(BG)and top gate(TG)dielectric.The thickness-dependent charge transport in our DG-MoS2 device is revealed by a four-terminal electrical measurement which excludes the contact influence,and the TCAD simulation is also applied to explain the experimental data.Our results indicate that the impact of quantum confinement effect plays an important role in the charge transport in the MoS2 channel,as it confines charge carriers in the center of the channel,which reduces the scattering and boosts the mobility compared to the single gating case.Furthermore,temperature-dependent transfer curves reveal that multi-layer MoS2 DG-FET is in the phonon-limited transport regime,while single layer MoS2 shows typical Coulomb impurity limited regime.展开更多
Bladder cancer is one of the commonest malignant tumors of urinary system with high recurrence. However, currently developed bladder cancer urine diagnosis methods are hindered by the low detection sensitivity and acc...Bladder cancer is one of the commonest malignant tumors of urinary system with high recurrence. However, currently developed bladder cancer urine diagnosis methods are hindered by the low detection sensitivity and accuracy. Herein, a molybdenum disulfide(MoS2) nanosheets-based field effect transistor(FET) sensor array was constructed for simultaneous detection of multiple bladder cancer biomarkers in human urine. With the excellent electronic property of MoS2 and the high specific identification capability of recognition molecules, the proposed biosensor array could simultaneously detect nuclear matrix protein 22(NMP22) and cytokeratin 8(CK8) with a wide linear range of 10-6–10-1 pg mL-1 and an ultra-low detection limit of 0.027 and 0.019 aM, respectively. Furthermore, this highly sensitive and specific MoS2 FET sensor array could be used to identify bladder cancer biomarkers from human urine samples. This designed high-performance biosensor array shows great potential in the future diagnosis of bladder cancer.展开更多
Recently,two-dimensional materials have been attracting increasing attention because of their novel properties and promising applications.However,the impurity doping remains a significant challenge owing to the lack o...Recently,two-dimensional materials have been attracting increasing attention because of their novel properties and promising applications.However,the impurity doping remains a significant challenge owing to the lack of the doping strategy in the atomically thin layers.Here we report on the chromium(Cr) and manganese(Mn)doping in atomically-thin MoS_2 crystals grown by chemical vapor deposition.The Cr/Mn doped MoS_2 samples are characterized by a peak at 1.76 and 1.79 eV in photoluminescence spectra,respectively,compared with the undoped one at 1.85 eV.The field-effect transistor(FET) devices based on the Mn doping show a higher threshold voltage than that of the pure MoS_2 while the Cr doping exhibits the opposite behavior.Importantly,the carrier concentration in these samples displays a remarkable difference arising from the doping effect,consistent with the evolution of the FET performance.The temperature-dependent conductivity measurements further demonstrate a large variation in activation energy.The successful incorporation of the Mn and Cr impurities into the monolayer MoS_2 paves the way towards the high Curie temperature two-dimensional dilute magnetic semiconductors.展开更多
基金supported by the National Key Research and Development Program of China(2016YFA0203900,2018YFA0306101)the National Natural Science Foundation of China(Grant No.91964202)Shanghai Municipal Science and Technology Commission(18JC1410300)。
文摘Semiconductive two dimensional(2D)materials have attracted significant research attention due to their rich band structures and promising potential for next-generation electrical devices.In this work,we investigate the MoS2 field-effect transistors(FETs)with a dual-gated(DG)architecture,which consists of symmetrical thickness for back gate(BG)and top gate(TG)dielectric.The thickness-dependent charge transport in our DG-MoS2 device is revealed by a four-terminal electrical measurement which excludes the contact influence,and the TCAD simulation is also applied to explain the experimental data.Our results indicate that the impact of quantum confinement effect plays an important role in the charge transport in the MoS2 channel,as it confines charge carriers in the center of the channel,which reduces the scattering and boosts the mobility compared to the single gating case.Furthermore,temperature-dependent transfer curves reveal that multi-layer MoS2 DG-FET is in the phonon-limited transport regime,while single layer MoS2 shows typical Coulomb impurity limited regime.
基金supported by the National Key Research and Development Program of China (2017YFA0208000)the National Natural Science Foundation of China (21925401, 21904033, 21675120)Changsha Municipal Science and Technology Projects, China (kq1901030)。
文摘Bladder cancer is one of the commonest malignant tumors of urinary system with high recurrence. However, currently developed bladder cancer urine diagnosis methods are hindered by the low detection sensitivity and accuracy. Herein, a molybdenum disulfide(MoS2) nanosheets-based field effect transistor(FET) sensor array was constructed for simultaneous detection of multiple bladder cancer biomarkers in human urine. With the excellent electronic property of MoS2 and the high specific identification capability of recognition molecules, the proposed biosensor array could simultaneously detect nuclear matrix protein 22(NMP22) and cytokeratin 8(CK8) with a wide linear range of 10-6–10-1 pg mL-1 and an ultra-low detection limit of 0.027 and 0.019 aM, respectively. Furthermore, this highly sensitive and specific MoS2 FET sensor array could be used to identify bladder cancer biomarkers from human urine samples. This designed high-performance biosensor array shows great potential in the future diagnosis of bladder cancer.
基金Project supported by the National Young 1000 Talent Planthe Pujiang Talent Plan in Shanghai+1 种基金the National Natural Science Foundation of China(Nos.61322407,11474058,61674040)the Chinese National Science Fund for Talent Training in Basic Science(No.J1103204)
文摘Recently,two-dimensional materials have been attracting increasing attention because of their novel properties and promising applications.However,the impurity doping remains a significant challenge owing to the lack of the doping strategy in the atomically thin layers.Here we report on the chromium(Cr) and manganese(Mn)doping in atomically-thin MoS_2 crystals grown by chemical vapor deposition.The Cr/Mn doped MoS_2 samples are characterized by a peak at 1.76 and 1.79 eV in photoluminescence spectra,respectively,compared with the undoped one at 1.85 eV.The field-effect transistor(FET) devices based on the Mn doping show a higher threshold voltage than that of the pure MoS_2 while the Cr doping exhibits the opposite behavior.Importantly,the carrier concentration in these samples displays a remarkable difference arising from the doping effect,consistent with the evolution of the FET performance.The temperature-dependent conductivity measurements further demonstrate a large variation in activation energy.The successful incorporation of the Mn and Cr impurities into the monolayer MoS_2 paves the way towards the high Curie temperature two-dimensional dilute magnetic semiconductors.