期刊文献+
共找到3,254篇文章
< 1 2 163 >
每页显示 20 50 100
Multiparameter Numerical Investigation of Two Types of Moving Interactions Between the Deep-Sea Mining Vehicle Track Plate and Seabed Soil:Digging and Rotating Motions
1
作者 SUN Peng-fei LYU Hai-ning +1 位作者 YANG Jian-min XU Zhi-yong 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期408-423,共16页
To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions... To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate. 展开更多
关键词 deep-sea mining vehicle rotating motion digging motion track plate-seabed soil interaction CEL numerical method
下载PDF
Pulses in ground motions identified through surface partial matching and their impact on seismic rocking consequence
2
作者 Tang Yuchuan Wang Jiankang Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期35-50,共16页
In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establis... In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establishes congruence and shift relationships between response spectrum surfaces.A similarity search between spectrum surfaces,supplemented with a similarity search in time series,has been applied to characterize the pulse-like features in pulse-type ground motions.The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions.Generally,the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified. 展开更多
关键词 velocity pulse ground motion surface similarity ROCKING OVERTURNING
下载PDF
Monitoring absolute vertical land motions and absolute sea-level changes from GPS and tide gauges data over French Polynesia
3
作者 Xianjie Li Jean-Pierre Barriot +2 位作者 Bernard Ducarme Marania Hopuare Yidong Lou 《Geodesy and Geodynamics》 EI CSCD 2024年第1期13-26,共14页
In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as an... In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as ancillary results,estimates of the absolute changes in sea level at the same locations.To verify our processing approach to determining vertical motion,we first modeled vertical motion at the International GNSS Service(IGS)THTI station located in the capital island of Tahiti and compared our estimate with previous independent determinations,with a good agreement.We obtained the following estimates for the vertical land motions at the tide gauges:Tubuai island,Austral Archipelago-0.92±0.17 mm/yr,Vairao village,Tahiti Iti:-0.49±0.39 mm/yr,Rikitea,Gambier Archipelago-0.43±0.17 mm/yr.The absolute variations of the sea level are:Tubuai island,Austral Archipelago 5.25±0.60 mm/yr,Vairao village,Tahiti Iti:3.62±0.52 mm/yr,Rikitea,Gambier Archipelago 1.52±0.23 mm/yr.We discuss these absolute values in light of the values obtained from altimetric measurements and other means in French Polynesia. 展开更多
关键词 GPS Tide gauges Sea level changes Vertical land motion
下载PDF
Maxsurf Motions模块在船舶耐波性上的应用与验证 被引量:3
4
作者 张大朋 严谨 +1 位作者 赵博文 朱克强 《科学技术与工程》 北大核心 2023年第4期1734-1746,共13页
船舶作为海洋中最主要的运动物体,其在海浪中的运动问题,是船舶适航性、耐波性的基础,同时也是船舶设计建造中的关键步骤。采用Maxsurf Motions模块对4种国际标准船模进行了耐波性计算,验证了Maxsurf Motions中的切片理论和面元法的计... 船舶作为海洋中最主要的运动物体,其在海浪中的运动问题,是船舶适航性、耐波性的基础,同时也是船舶设计建造中的关键步骤。采用Maxsurf Motions模块对4种国际标准船模进行了耐波性计算,验证了Maxsurf Motions中的切片理论和面元法的计算精度与可靠性,探讨了Motions程序在船舶耐波性分析中的可行性,分析了Motions模块计算误差的原因。结果表明:Motions模块对船舶运动响应以及波浪增阻的计算精度基本令人满意。对于附加质量系数和阻尼系数,Motions在中高频波段的计算精度较高。研究成果对Maxsurf Motions的应用起到一定的借鉴和指导作用,同时也提供了一系列耐波性计算的验证算例。 展开更多
关键词 Maxsurf motions 运动响应 耐波性 切片理论 面元法
下载PDF
Revealing the Fluttering Motions of Mid-Water Trawl Codend Through Sea Trials:Case Study of Antarctic Krill Trawl Codend
5
作者 LIU Wei TANG Hao +5 位作者 NYATCHOUBA NSANGUE Bruno Thierry ZHANG Feng YIN Liqiang XU Liuxiong HU Fuxiang LIU Pengfei 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期555-564,共10页
The dynamic coupling between the fluttering motions and hydrodynamic characteristics of codend is essential in understanding the trawl selectivity through fish response and the drag force acting on the whole trawl.Thi... The dynamic coupling between the fluttering motions and hydrodynamic characteristics of codend is essential in understanding the trawl selectivity through fish response and the drag force acting on the whole trawl.This study investigated the effect of towing speed,warp length,warp tension,and catch size on the fluttering motions of Antarctic krill trawl codend during net shooting,towing,and hauling by using sea trial data.The time-periodicity of codend oscillation was analyzed by the Morlet wavelet transform method.Results indicated that the period of codend oscillation was between 50 s and 90 s and showed an increasing trend with the warp tension but a decreased value at the towing stage.The coefficient amplitude of codend oscillation was between 0 and 4 at the net shooting and hauling stages,and between 0.2 and 0.6 at the towing stage.The amplitude of codend oscillation increased with the warp tension,towing speed,and catch size,but decreased with the increase of the warp length.In addition,the period of codend oscillation increased with the towing speed at the net shooting and hauling stages,but decreased at the towing stage.These results from codend fluttering motions can improve the understanding of fish behavior and gear shape that modify the hydrodynamic force on the codend instantaneously. 展开更多
关键词 codend fluttering motions sea trials Morlet wavelet PERIODICITY
下载PDF
Evaluation of underground blast-induced ground motions through nearsurface low-velocity geological layers
6
作者 Yonggang Gou Xiuzhi Shi +2 位作者 Zhi Yu Xiaofeng Huo Xianyang Qiu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期600-617,共18页
Surface ground motion produced by underground blasts is significantly influenced by near-surface geological conditions.However,near-surface low-propagation velocity layers were always ignored in past analyses of groun... Surface ground motion produced by underground blasts is significantly influenced by near-surface geological conditions.However,near-surface low-propagation velocity layers were always ignored in past analyses of ground motions due to their thin thickness.With the rising concern about surface ground motions produced by the ascendant scale and frequentness of underground excavation and mining,close attention is gradually paid to ground blast vibrations.Therefore,systemic experiments were conducted and took seven months in an underground mine to clarify the variation of motion from underground rock to surface ground.The attenuation of surface ground peak particle velocities(PPVs)is compared to that in underground rock,and horizontal amplitudes are compared to vertical amplitudes.Differences between bedrock and surface ground vibrations are analyzed to illustrate the site effect of near-surface lower-propagation velocity layers.One-dimensional site response analysis is employed to quantify the influence of different geological profiles on surface ground vibrations.The experimental data and site response analysis allowed the following conclusions:(1)geological site effects mainly produce decreasing dominant frequency(DF)of surface ground vibrations;(2)the site amplification effect of blast vibration needs to be characterized by peak particle displacement(PPD);(3)shear waves(S-waves)begin to dominate and surface Rayleigh waves(R-waves)develop as blast-induced ground vibrations travel upward through rock and lower-velocity layers to the surface.The comparison of response relative displacement to a critical value is best to assess the potential for cracking on surface structures. 展开更多
关键词 Surface ground motions Underground blasts Geological site condition Amplitude attenuation Site response analysis
下载PDF
Numerical Study on Aerodynamic Performance of Floating Dual-Rotor Wind Turbines in Heave and Surge Motions
7
作者 WU Xiao-di LU Wen-hao +3 位作者 WANG Kai HU Wei-fei FANG Jian-hao ZHA Ruo-si 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期1011-1021,共11页
Compared with the traditional wind turbine of a single rotor,dual-rotor wind turbines(DRWTs)have higher wind energy capture efficiency and a more complex structure.Therefore,the aerodynamic performance of the DRWT ins... Compared with the traditional wind turbine of a single rotor,dual-rotor wind turbines(DRWTs)have higher wind energy capture efficiency and a more complex structure.Therefore,the aerodynamic performance of the DRWT installed on the floating platform will be greatly affected by the motion caused by wind and wave loads.In this paper,5 MW and 750 kW single rotor wind turbines(SRWTs)are combined into a 5 MW-5 MW DRWT and a 5 MW-750 kW DRWT,and their power output and wake field characteristics in different motions are studied.The flow field is obtained by solving the Reynolds-averaged Navier–Stokes equation(RANS).The overset grid technique is employed to achieve the large-amplitude multiple-degree-of-freedom motion of the DRWT.The overall performance of the 5 MW single rotor wind turbine is determined by a numerical method.For the DRWTs,numerical results show that the surge motion and heave motion both have a negative effect on the power output of the DRWT.The surge motion is a critical factor that causes the power output of the DRWT to periodically change with motion.The average power output of the DRWT influenced by motion is lower than that of a DRWT with a fixed bottom.The surge motion significantly disturbs the wake of the DRWT due to the mutual interference between the upstream and downstream rotors.Under the influence of heave motion,low-velocity regions downstream of the blade tip are enhanced.This study indicates that attenuating the surge and heave motion of offshore DRWT is very significant for improving its efficiency and should be taken into consideration during the design procedure. 展开更多
关键词 DRWT surge motion heave motion wake field power output
下载PDF
Effects of the probability of pulse-like ground motions on landslide susceptibility assessment in near-fault areas
8
作者 LIU Jing FU Hai-ying +6 位作者 ZHANG Ying-bin XU Pei-yi HAO Run-dan YU Hai-hong HE Yun-yong DENG Hong-yan ZHENG Lu 《Journal of Mountain Science》 SCIE CSCD 2023年第1期31-48,共18页
Earthquake-induced strong near-fault ground motion is typically accompanied by largevelocity pulse-like component,which causes serious damage to slopes and buildings.Although not all near-fault ground motions contain ... Earthquake-induced strong near-fault ground motion is typically accompanied by largevelocity pulse-like component,which causes serious damage to slopes and buildings.Although not all near-fault ground motions contain a pulse-like component,it is important to consider this factor in regional earthquake-induced landslide susceptibility assessment.In the present study,we considered the probability of the observed pulse-like ground motion at each site(PP)in the region of an earthquake as one of the conditioning factors for landslide susceptibility assessment.A subset of the area affected by the 1994Mw6.7 Northridge earthquake in California was examined.To explore and verify the effects of PP on landslide susceptibility assessment,seven models were established,consisting of six identical influencing factors(elevation,slope gradient,aspect,distance to drainage,distance to roads,and geology)and one or two factors characterizing the intensity of the earthquake(distance to fault,peak ground acceleration,peak ground velocity,and PP)in logistic regression analysis.The results showed that the model considering PP performed better in susceptibility assessment,with an area under the receiver operating characteristic curve value of 0.956.Based on the results of relative importance analysis,the contribution of the PP value to earthquakeinduced landslide susceptibility was ranked fourth after the slope gradient,elevation,and lithology.The prediction performance of the model considering the pulse-like effect was better than that reported previously.A logistic regression model that considers the pulse-like effect can be applied in disaster prevention,mitigation,and construction planning in near-fault areas. 展开更多
关键词 EARTHQUAKE LANDSLIDES Pulse-like ground motion Logistic regression Susceptibility assessment 1994 Northridge earthquake
下载PDF
Direct use of peak ground motion parameters for the estimation of inelastic displacement ratio of SDOF systems subjected to repeated far fault ground motions 被引量:5
9
作者 Cengizhan Durucan Muhammed Gümüs 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期771-785,共15页
This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion par... This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion parameters are used to define the scatter of the original data. The ratio of peak ground acceleration to peak ground velocity, and peak ground velocity of the ground motion records and structural parameters such as period of vibration and lateral strength ratio are used in the proposed equations. For the development of the equations, nonlinear time history analyses of single-degree-offreedom systems are conducted. Then, the results are used in a multivariate regression procedure. The equations are verified by comparing the estimated results with the calculated results. The average error and coefficient of variation of the proposed equations are presented. The analyses results revealed that the direct use of peak ground motion parameters for the estimation of inelastic displacement ratio significantly reduced the scatter in the original data and yielded accurate results. From the comparative results it is also observed that results obtained using equations specific to peak ground velocity or peak ground acceleration to peak ground velocity ratio are similar. 展开更多
关键词 C1 peak ground velocity peak ground acceleration far fault ground motions sequential ground motions
下载PDF
Error Modeling and Sensitivity Analysis of a Parallel Robot with SCARA(Selective Compliance Assembly Robot Arm) Motions 被引量:17
10
作者 CHEN Yuzhen XIE Fugui +1 位作者 LIU Xinjun ZHOU Yanhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期693-702,共10页
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parall... Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration. 展开更多
关键词 parallel robot selective compliance assembly robot arm(SCARA) motions error modeling sensitivity analysis parallelogram structure
下载PDF
Dominant pulse simulation of near fault ground motions 被引量:11
11
作者 S.R. Hoseini Vaez M.K. Sharbatdar +2 位作者 G. Ghodrati Amiri H. Naderpour A. Kheyroddin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期267-278,共12页
In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed ve... In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed velocity function, the corresponding expressions for the ground acceleration and displacement time histories are also derived. The proposed model is then fitted using some selected pulse-like near fault ground motions in the Next Generation Attenuation (NGA) project library. The new model is not only simple in form but also simulates the long-period portion of actual velocity near fault records with a high level of precision. It is shown that the proposed model-based elastic response spectra are compatible with the near fault records in the neighborhood of the prevailing frequency of the pulse. The results indicate that the proposed model adequately simulates the components of the time histories. Finally, the energy of the proposed pulse was compared with the energy of the actual record to confirm the compatibility. 展开更多
关键词 dominant pulse near fault ground motions forward directivity response spectra SIMULATION
下载PDF
Simulation of spatially correlated earthquake ground motions for engineering purposes 被引量:7
12
作者 Wu Yongxin Gao Yufeng Li Dayong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期163-173,共11页
A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the ... A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the wave-passage effect and the site-response effect, are taken into account, and corresponding terms/parameters are incorporated into the well known model of uniform ground motions. Some of these terms/parameters can be determined by the root operation, and others can be calculated directly. The proposed model is first verified theoretically, and examples of ground motion simulations are provided as a further illustration. It is proven that the ensemble expected value and the ensemble auto-/cross-spectral density functions of the simulated ground motions are identical to the target spectral density functions. The proposed model can also be used to simulate other correlated stochastic processes, such as wave and wind loads. 展开更多
关键词 ground motions simulation root operation incoherency effect wave-passage effect site-response effect
下载PDF
Simulation of multi-support depth-varying earthquake ground motions within heterogeneous onshore and offshore sites 被引量:6
13
作者 Li Chao Li Hongnan +2 位作者 Hao Hong Bi Kaiming Tian Li 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期475-490,共16页
This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimens... This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimensional ground motion transfer functions on the surface or within an offshore or onshore site are derived by considering the effects of seawater and porous soils on the propagation of seismic P waves.Moreover,the depth-varying and spatial variation properties of seismic ground motions are considered in the ground motion simulation.Using the obtained transfer functions at any locations within a site,the offshore or onshore depth-varying seismic motions are stochastically simulated based on the spectral representation method(SRM).The traditional approaches for simulating spatially varying ground motions are improved and extended to generate MDSMs within multiple offshore and onshore sites.The simulation results show that the PSD functions and coherency losses of the generated MDSMs are compatible with respective target values,which fully validates the effectiveness of the proposed simulation method.The synthesized MDSMs can provide strong support for the precise seismic response prediction and performance-based design of both offshore and onshore large-span engineering structures. 展开更多
关键词 seismic motion simulation onshore and offshore sites ground motion spatial variation depth-varying motions transfer function
下载PDF
Features of near-inertial motions observed on the northern South China Sea shelf during the passage of two typhoons 被引量:6
14
作者 CHEN Shengli HU Jianyu POLTON Jeff A. 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第1期38-43,共6页
Features of near-inertial motions on the shelf (60 m deep) of the northern South China Sea were observed under the passage of two typhoons during the summer of 2009. There are two peaks in spectra at both sub-inerti... Features of near-inertial motions on the shelf (60 m deep) of the northern South China Sea were observed under the passage of two typhoons during the summer of 2009. There are two peaks in spectra at both sub-inertial and super-inertial frequencies. The super-inertial energy maximizes near the surface, while the sub-inertial energy maximizes at a deeper layer of 15 m. The sub-inertial shift of frequency is induced by the negative background vorticity. The super-inertial shift is probably attributed to the near-inertial wave propagating from higher latitudes. The near-inertial currents exhibit a two-layer pattern being separated at mid-depth (25-30 m), with the phase in the upper layer being nearly opposite to that in the lower layer. The vertical propagation of phase implies that the near-inertial energy is not dominantly downward. The upward flux of the near-inertial energy is more evident at the surface layer (〈17 m). There exist two boundaries at 17 and 40 rn, where the near-inertial energy is reflected upward and downward. The near-inertial motion is intermittent and can reach a peak of as much as 30 cm/s. The passage of Typhoon Nangka generates an intensive near-inertial event, but Typhoon Linfa does not. This difference is attributed to the relative moor- ing locations, which is on the right hand side of Nangka's path (leading to a wind pattern rotating clockwise with time) and is on the left hand side of Linfa's path (leading to a wind pattern rotating anti-clockwise with time). 展开更多
关键词 near-inertial motions TYPHOON South China Sea
下载PDF
Bifurcation behavior and coexisting motions in a time-delayed power system 被引量:4
15
作者 马美玲 闵富红 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期78-86,共9页
With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this p... With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this paper, coexisting phenomenon in a fourth-order time-delayed power system is investigated for the first time with different initial conditions.With the mechanical power, generator damping factor, exciter gain, and time delay varying, the specific characteristic of the time-delayed system, including a discontinuous "jump" bifurcation behavior is analyzed by bifurcation diagrams, phase portraits, Poincar′e maps, and power spectrums. Moreover, the coexistence of two different periodic orbits and chaotic attractors with periodic orbits are observed in the power system, respectively. The production condition and existent domain of the coexistence phenomenon are helpful to avoid undesirable behavior in time-delayed power systems. 展开更多
关键词 chaotic oscillation time delays bifurcation diagrams coexisting motions
下载PDF
Force and Flow Structure of an Airfoil Performing Some Unsteady Motions at Small Reynolds Number 被引量:9
16
作者 Sun Mao Hossein Hamdani (Institute of Fluid Mechanics,Beijing University of Aeronautics & Astronautics) 《空气动力学学报》 CSCD 北大核心 2000年第z1期96-102,共7页
关键词 Flow Re Force and Flow Structure of an Airfoil Performing Some Unsteady motions at Small Reynolds Number
下载PDF
Domain Decomposition and Matching for Time-Domain Analysis of Motions of Ships Advancing in Head Sea 被引量:3
17
作者 唐恺 朱仁传 +1 位作者 缪国平 范菊 《China Ocean Engineering》 SCIE EI CSCD 2014年第4期433-444,共12页
A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surfa... A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare. 展开更多
关键词 time domain transient Green function Rankine source decomposition and matching ship motions forward speed
下载PDF
Variational Principle of Instability of Atmospheric Motions 被引量:17
18
作者 曾庆存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1989年第2期137-172,共36页
Problems of instability of rotating atmospheric motions are investigated by using nonlinear governing equations and the variational principle. The method suggested in this paper is universal for obtaining criteria of ... Problems of instability of rotating atmospheric motions are investigated by using nonlinear governing equations and the variational principle. The method suggested in this paper is universal for obtaining criteria of instability in all models with all possible basic flows. For example, the model can be barotropic or baroclinic, layer or continuous, quasi-geostrophic or primitive equations; the basic flow can be zonal or nonzonal, steady or unsteady.Although the basic flows possess a great deal of variety, they all are the stationary points in the functional space determined by an appropriate invariant functional. The basic flow is an unsteady one if the conservation of angular momentum is included in the associated functional.The second variation, linear or nonlinear, gives the criteria of instability. Especially, the general criteria of instability for unsteady basic flow, orographically disturbed flow as well as nongeostrophic flow are first obtained by the method described in this paper.It is also shown that the difference between the criteria of instability obtained by the linear theory and our variational principle clearly indicates the importance of using nonlinear governing equations.In the appendix the theory is extended to cases such as in a β-plane where the fluid does not possess finite total energy, hence the variational principle can not be directly applied. However, a generalized Liapbunoff norm can still be obtained on the basis of variational consideration. 展开更多
关键词 Variational Principle of Instability of Atmospheric motions
下载PDF
Near-fault ground motions with prominent acceleration pulses:pulse characteristics and ductility demand 被引量:3
19
作者 Mai Tong Vladimir Rzhevskyt +3 位作者 Dai Junwu George C Lee Qi Jincheng Qi Xiaozhai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第3期215-223,共9页
Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration ... Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration pulses are related to large ground velocity pulses, others are caused by mechanisms that are totally different from those causing the velocity pulses or fling steps. Various efforts to model acceleration pulses have been reported in the literature. In this paper, research results from a recent study of acceleration pulse prominent ground motions and an analysis of structural damage induced by acceleration pulses are summarized. The main results of the study include: (1) temporal characteristics of acceleration pulses; (2) ductility demand spectrum of simple acceleration pulses with respect to equivalent classes of dynamic systems and pulse characteristic parameters; and (3) estimation of fundamental period change under the excitation of strong acceleration pulses. By using the acceleration pulse induced linear acceleration spectrum and the ductility demand spectrum, a simple procedure has been developed to estimate the ductility demand and the fundamental period change of a reinforced concrete (RC) structure under the impact of a strong acceleration pulse. 展开更多
关键词 near-fault ground motions acceleration pulse ductility demand spectrum
下载PDF
Approximation approach to the SRM based on root decomposition in the simulation of spatially varying ground motions 被引量:2
20
作者 Wu Yongxin Gao Yufeng +2 位作者 Li Dayong Xu Changjie Ali H Mahfouz 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第3期363-372,共10页
The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the ef... The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the efficiency of the simulation. The accuracy of the approximation approach may be affected by three factors: matrix for decomposition, distribution of frequency interpolation nodes and elements for interpolation. The influence of these factors on the accuracy of this approach is examined and the following conclusions are drawn. The SRM based on the root decomposition of the lagged coherency matrix exhibits greater accuracy than the SRM based on the root decomposition of the cross spectral matrix. The equal energy distribution of frequency interpolation nodes proposed in this study is more effective than the counter pith with an equal spacing. Elements for interpolation do not have much of an effect on the accuracy, so interpolation of the elements of the decomposed matrix is recommended because it is less complicated from a computational efficiency perspective. 展开更多
关键词 ground motions simulation spectral representation method spatially varying APPROXIMATION root decomposition
下载PDF
上一页 1 2 163 下一页 到第
使用帮助 返回顶部