This paper presents an improved non-data-aided algo- rithm for carrier frequency estimation for burst M-ary PSK signals when modulation order M and training symbols are unknown. Unlike data-aided estimation, a phase c...This paper presents an improved non-data-aided algo- rithm for carrier frequency estimation for burst M-ary PSK signals when modulation order M and training symbols are unknown. Unlike data-aided estimation, a phase clustering algorithm is used first to estimate M and modulated information is removed by a vari- able interval linear phase unwrapping. Then, a high-order correlation algorithm with proper correction is present, which reduces the probability of phase ambiguity and promotes anti-noise capability of the estimation. Simulations are given to analyze the unbiased esti- mation range, and the asymptotic performance and symbol number are needed to compare with the former algorithms. The new algo- rithm has a large estimation range close to the theoretical maximum value for non-data-aided estimation and has a better performance than earlier non-data-aided techniques for large frequency offset, low signal-to-noise ratio, and limited symbol numbers.展开更多
基金Supported by the National Natural Science Foundation of China (61001111)
文摘This paper presents an improved non-data-aided algo- rithm for carrier frequency estimation for burst M-ary PSK signals when modulation order M and training symbols are unknown. Unlike data-aided estimation, a phase clustering algorithm is used first to estimate M and modulated information is removed by a vari- able interval linear phase unwrapping. Then, a high-order correlation algorithm with proper correction is present, which reduces the probability of phase ambiguity and promotes anti-noise capability of the estimation. Simulations are given to analyze the unbiased esti- mation range, and the asymptotic performance and symbol number are needed to compare with the former algorithms. The new algo- rithm has a large estimation range close to the theoretical maximum value for non-data-aided estimation and has a better performance than earlier non-data-aided techniques for large frequency offset, low signal-to-noise ratio, and limited symbol numbers.