In this paper, we attempt to resolve the problem of grading of brain tumors as grade 2, grade 3, grade 4, using information from magnetic resonance spectroscopy (MRS) image, to assist in clinical diagnosis. This paper...In this paper, we attempt to resolve the problem of grading of brain tumors as grade 2, grade 3, grade 4, using information from magnetic resonance spectroscopy (MRS) image, to assist in clinical diagnosis. This paper proposes a novel approach to extract metabolite values represented in a graphical form in MR Spectroscopy image. Metabolites like N-acetyl aspartate (NAA), Choline (CHO) along with the metabolite ratios NAA/CHO and presence/absence of LACTATE peak play the most important role in deciding the tumor type. The proposed approach consists of several steps including preprocessing, metabolite peak height scanning and classification. Proposed system stores the metabolite values in dataset instead of storing MRS images;so reduces the image processing tasks and memory requirements. Further these metabolite values and ratios are fed to a BPN classifier. Experimental results demonstrate the effectiveness of the proposed approach in classifying the brain tumors.展开更多
文摘In this paper, we attempt to resolve the problem of grading of brain tumors as grade 2, grade 3, grade 4, using information from magnetic resonance spectroscopy (MRS) image, to assist in clinical diagnosis. This paper proposes a novel approach to extract metabolite values represented in a graphical form in MR Spectroscopy image. Metabolites like N-acetyl aspartate (NAA), Choline (CHO) along with the metabolite ratios NAA/CHO and presence/absence of LACTATE peak play the most important role in deciding the tumor type. The proposed approach consists of several steps including preprocessing, metabolite peak height scanning and classification. Proposed system stores the metabolite values in dataset instead of storing MRS images;so reduces the image processing tasks and memory requirements. Further these metabolite values and ratios are fed to a BPN classifier. Experimental results demonstrate the effectiveness of the proposed approach in classifying the brain tumors.