Magneto-rheological visco-elastomer (MRVE) as a new smart material developed in recent years has several significant advantages over magneto-rheological liquid. The adjustability of structural dynamics to random env...Magneto-rheological visco-elastomer (MRVE) as a new smart material developed in recent years has several significant advantages over magneto-rheological liquid. The adjustability of structural dynamics to random environmental excitations is required in vibration control. MRVE can supply considerably adjustable damping and stiffness for structures, and the adjustment of dynamic properties is achieved only by applied magnetic fields with changeless structure design. Increasing researches on MRVE dy- namic properties, modeling, and vibration control application are presented. Recent advances in MRVE dynamic properties and structural vibration control application including composite structural vibration mitigation under uniform magnetic fields, vibration response characteristics improvement through harmonic parameter distribution, and optimal bounded parametric control design based on the dynamical programming principle are reviewed. Relevant main methods and results introduced are beneficial to understanding and researches on MRVE application and development.展开更多
The smart magneto-rheological visco-elastomer (MRVE) has a promising application to vibration control.Its dynamic characteristics are described by complex moduli which are applicable to linear dynamics.However,experim...The smart magneto-rheological visco-elastomer (MRVE) has a promising application to vibration control.Its dynamic characteristics are described by complex moduli which are applicable to linear dynamics.However,experimental results show remarkable nonlinear relations between force and deformation for certain large deformations,and the nonlinear dynamic modeling needs to be developed.The present study focuses on the nonlinear dynamic characteristics of MRVE.The MRVE was fabricated and specimens were tested to show nonlinear mechanical properties and dynamic behaviors.The nonlinear effect induced by applied magnetic fields was investigated.A phenomenological model for the dynamic behaviors of MRVE was proposed to describe the nonlinear elasticity,linear damping and hysteretic effect,and the corresponding equivalent linear model in the frequency domain was also given for small deformations.The proposed model is applicable to the dynamics and control analysis of composite structures with MRVE.展开更多
基金supported by the National Natural Science Foundation of China(11572279,11432012,and U1234210)the Zhejiang Provincial Natural Science Foundation of China(LY15A020001)the Hong Kong Polytechnic University Fund(1-BBY5)
文摘Magneto-rheological visco-elastomer (MRVE) as a new smart material developed in recent years has several significant advantages over magneto-rheological liquid. The adjustability of structural dynamics to random environmental excitations is required in vibration control. MRVE can supply considerably adjustable damping and stiffness for structures, and the adjustment of dynamic properties is achieved only by applied magnetic fields with changeless structure design. Increasing researches on MRVE dy- namic properties, modeling, and vibration control application are presented. Recent advances in MRVE dynamic properties and structural vibration control application including composite structural vibration mitigation under uniform magnetic fields, vibration response characteristics improvement through harmonic parameter distribution, and optimal bounded parametric control design based on the dynamical programming principle are reviewed. Relevant main methods and results introduced are beneficial to understanding and researches on MRVE application and development.
基金supported by the National Natural Science Foundation of China (Grant No. 11072215)the Fundamental Research Funds for the Central Universitiesthe Hong Kong Polytechnic University through the Development of Niche Areas Programme (Grant No. 1-BB95)
文摘The smart magneto-rheological visco-elastomer (MRVE) has a promising application to vibration control.Its dynamic characteristics are described by complex moduli which are applicable to linear dynamics.However,experimental results show remarkable nonlinear relations between force and deformation for certain large deformations,and the nonlinear dynamic modeling needs to be developed.The present study focuses on the nonlinear dynamic characteristics of MRVE.The MRVE was fabricated and specimens were tested to show nonlinear mechanical properties and dynamic behaviors.The nonlinear effect induced by applied magnetic fields was investigated.A phenomenological model for the dynamic behaviors of MRVE was proposed to describe the nonlinear elasticity,linear damping and hysteretic effect,and the corresponding equivalent linear model in the frequency domain was also given for small deformations.The proposed model is applicable to the dynamics and control analysis of composite structures with MRVE.