Federated learning has been used extensively in business inno-vation scenarios in various industries.This research adopts the federated learning approach for the first time to address the issue of bank-enterprise info...Federated learning has been used extensively in business inno-vation scenarios in various industries.This research adopts the federated learning approach for the first time to address the issue of bank-enterprise information asymmetry in the credit assessment scenario.First,this research designs a credit risk assessment model based on federated learning and feature selection for micro and small enterprises(MSEs)using multi-dimensional enterprise data and multi-perspective enterprise information.The proposed model includes four main processes:namely encrypted entity alignment,hybrid feature selection,secure multi-party computation,and global model updating.Secondly,a two-step feature selection algorithm based on wrapper and filter is designed to construct the optimal feature set in multi-source heterogeneous data,which can provide excellent accuracy and interpretability.In addition,a local update screening strategy is proposed to select trustworthy model parameters for aggregation each time to ensure the quality of the global model.The results of the study show that the model error rate is reduced by 6.22%and the recall rate is improved by 11.03%compared to the algorithms commonly used in credit risk research,significantly improving the ability to identify defaulters.Finally,the business operations of commercial banks are used to confirm the potential of the proposed model for real-world implementation.展开更多
为了度量E-Bayes估计的误差,该文基于E-Bayes估计的定义,引入了E-Bayes估计的E-MSE(expected mean square error)的定义.对Poisson分布的参数,在不同损失函数(包括:平方损失,K-损失,加权平方损失)下分别给出了E-Bayes估计及其E-MSE的表...为了度量E-Bayes估计的误差,该文基于E-Bayes估计的定义,引入了E-Bayes估计的E-MSE(expected mean square error)的定义.对Poisson分布的参数,在不同损失函数(包括:平方损失,K-损失,加权平方损失)下分别给出了E-Bayes估计及其E-MSE的表达式.用MonteCarlo方法进行模拟比较提出的估计方法的性能,分析了一个真实数据集并进行了比较,所得结果比较基于E-MSE,结果表明该文提出的方法可行且便于应用.展开更多
基金funded by the State Grid Jiangsu Electric Power Company(Grant No.JS2020112)the National Natural Science Foundation of China(Grant No.62272236).
文摘Federated learning has been used extensively in business inno-vation scenarios in various industries.This research adopts the federated learning approach for the first time to address the issue of bank-enterprise information asymmetry in the credit assessment scenario.First,this research designs a credit risk assessment model based on federated learning and feature selection for micro and small enterprises(MSEs)using multi-dimensional enterprise data and multi-perspective enterprise information.The proposed model includes four main processes:namely encrypted entity alignment,hybrid feature selection,secure multi-party computation,and global model updating.Secondly,a two-step feature selection algorithm based on wrapper and filter is designed to construct the optimal feature set in multi-source heterogeneous data,which can provide excellent accuracy and interpretability.In addition,a local update screening strategy is proposed to select trustworthy model parameters for aggregation each time to ensure the quality of the global model.The results of the study show that the model error rate is reduced by 6.22%and the recall rate is improved by 11.03%compared to the algorithms commonly used in credit risk research,significantly improving the ability to identify defaulters.Finally,the business operations of commercial banks are used to confirm the potential of the proposed model for real-world implementation.
文摘为了度量E-Bayes估计的误差,该文基于E-Bayes估计的定义,引入了E-Bayes估计的E-MSE(expected mean square error)的定义.对Poisson分布的参数,在不同损失函数(包括:平方损失,K-损失,加权平方损失)下分别给出了E-Bayes估计及其E-MSE的表达式.用MonteCarlo方法进行模拟比较提出的估计方法的性能,分析了一个真实数据集并进行了比较,所得结果比较基于E-MSE,结果表明该文提出的方法可行且便于应用.