Featuring low communication requirements and high reliability,the voltage droop control method is widely adopted in the voltage source converter based multi-terminal direct current(VSC-MTDC)system for autonomous DC vo...Featuring low communication requirements and high reliability,the voltage droop control method is widely adopted in the voltage source converter based multi-terminal direct current(VSC-MTDC)system for autonomous DC voltage regulation and power-sharing.However,the traditional voltage droop control method with fixed droop gain is criticized for over-limit DC voltage deviation in case of large power disturbances,which can threaten stable operation of the entire VSCMTDC system.To tackle this problem,this paper proposes an adaptive reference power based voltage droop control method,which changes the reference power to compensate the power deviation for droop-controlled voltage source converters(VSCs).Besides retaining the merits of the traditional voltage droop control method,both DC voltage deviation reduction and power distribution improvement can be achieved by utilizing local information and a specific control factor in the proposed method.Basic principles and key features of the proposed method are described.Detailed analyses on the effects of the control factor on DC voltage deviation and imbalanced power-sharing are discussed,and the selection principle of the control factor is proposed.Finally,the effectiveness of the proposed method is validated by the simulations on a five-terminal VSC based high-voltage direct current(VSC-HVDC)system.展开更多
An equivalent source-load MTDC system including DC voltage control units,power control units and interconnected DC lines is considered in this paper,which can be regarded as a generic structure of low-voltage DC micro...An equivalent source-load MTDC system including DC voltage control units,power control units and interconnected DC lines is considered in this paper,which can be regarded as a generic structure of low-voltage DC microgrids,mediumvoltage DC distribution systems or HVDC transmission systems with a common DC bus.A reduced-order model is proposed with a circuit structure of a resistor,inductor and capacitor in parallel for dynamic stability analysis of the system in DC voltage control timescale.The relationship between control parameters and physical parameters of the equivalent circuit can be found,which provides an intuitive insight into the physical meaning of control parameters.Employing this model,a second-order characteristic equation is further derived to investigate system dynamic stability mechanisms in an analytical approach.As a result,the system oscillation frequency and damping are characterized in a straight forward manner,and the role of electrical and control parameters and different system-level control strategies in system dynamic stability in DC voltage control timescale is defined.The effectiveness of the proposed reduced-order model and the correctness of the theoretical analysis are verified by simulation based on PSCAD/EMTDC and an experiment based on a hardware low-voltage MTDC system platform.展开更多
This paper investigates a control and protection strategy for a four-terminal modular multilevel converter(MMC)based high-voltage direct current(HVDC)system under a converter-side AC fault.Based on the system operatin...This paper investigates a control and protection strategy for a four-terminal modular multilevel converter(MMC)based high-voltage direct current(HVDC)system under a converter-side AC fault.Based on the system operating condition,a control and protection strategy against the fault with normal blocking of the converter is proposed.In practical,applications encountering such a fault,the MMC at the fault side may experience different conditions of blocking failure.The blocking failures may occur on:①the whole converter;②one converter arm;③one sub-module(SM)/several SMs of one converter arm;④other conditions.The phenomenon of the multi-terminal HVDC(MTDC)system following the fault is analyzed under the first three conditions with real-time simulations using the real-time digital simulator(RTDS).Based on the impact of different conditions on the MTDC system,the necessity of utilizing special control and protection is discussed.A special control and protection strategy is proposed for emergency conditions,and its effectiveness is verified by real-time simulation results.展开更多
In this paper,a VSG(virtual synchronous generator)-based method with adaptive active power and DC voltage droop is proposed for the control of VSC stations in the multi-terminal DC(MTDC)system.This control strategy ca...In this paper,a VSG(virtual synchronous generator)-based method with adaptive active power and DC voltage droop is proposed for the control of VSC stations in the multi-terminal DC(MTDC)system.This control strategy can improve the inertial level of the AC networks and attenuate the rate of change of frequency when a disturbance occurs.In addition,the droop control of the active power and DC voltage is implemented to make the AC networks share the unbalanced power in the MTDC.The droop coefficients are adaptively adjusted depending on the frequency margin of every AC network,which makes the allocation of unbalanced power among AC networks more reasonable from the frequency variation perspective.The control strategy is evaluated in the scenarios of sudden load change and wind turbine tripping,and the results are presented to demonstrate its effectiveness.展开更多
Multi terminal VSC-HVDC systems are a promising solution to the problem of connecting offshore wind farms to AC grids.Optimal power sharing and appropriate control of DC-link voltages are essential and must be maintai...Multi terminal VSC-HVDC systems are a promising solution to the problem of connecting offshore wind farms to AC grids.Optimal power sharing and appropriate control of DC-link voltages are essential and must be maintained dur-ing the operation of VSC-MTDC systems,particularly in post-contingency conditions.The traditional droop control methods cannot satisfy these requirements,and accordingly,this paper proposes a novel centralized control strategy based on a look-up table to ensure optimal power sharing and minimum DC voltage deviation immediately during post-contingency conditions by considering converter limits.It also reduces destructive effects(e.g.,frequency devia-tion)on onshore AC grids and guarantees the stable operation of the entire MTDC system.The proposed look-up table is an array of data that relates operating conditions to optimal droop coefficients and is determined according to N-1 contingency analysis and a linearized system model.Stability constraints and contingencies such as wind power changes,converter outage,and DC line disconnection are considered in its formation procedure.Simulations performed on a 4-terminal VSC-MTDC system in the MATLAB-Simulink environment validate the effectiveness and superiority of the proposed control strategy.展开更多
To better utilize the diversity of renewable energies in the U. S., this paper proposes a cross-seam hybrid multi-terminal high-voltage direct current(MTDC) system for the integration of different types of renewable e...To better utilize the diversity of renewable energies in the U. S., this paper proposes a cross-seam hybrid multi-terminal high-voltage direct current(MTDC) system for the integration of different types of renewable energies in the U. S.Based on a developed station-hybrid converter design, the proposed hybrid MTDC system further investigates the connection methods of renewable energies and develops novel flexible power flow control strategies for realizing uninterrupted integration of renewable energies. In addition, the frequency response control of the hybrid MTDC system is proposed by utilizing the coordination between the converters in the hybrid MTDC system.The feasibility of the hybrid MTDC system and the performance of its corresponding control strategies are conducted in the PSCAD/EMTDC simulation. The simulation results indicate that the proposed hybrid MTDC system could realize the uninterrupted integration of renewable energies and flexible power transmission to both coasts of U.S.展开更多
在基于模块化多电平流器的多端柔性直流输电(modular multi-level converter based multi-terminal high voltage direct current system,MMC-MTDC)系统中,PI双环解耦的直接电流控制(double-loop direct current,DLDC)无法为系统提供惯...在基于模块化多电平流器的多端柔性直流输电(modular multi-level converter based multi-terminal high voltage direct current system,MMC-MTDC)系统中,PI双环解耦的直接电流控制(double-loop direct current,DLDC)无法为系统提供惯性,而常规虚拟同步发电机(conventional virtual synchronous generator,CVSG)控制虽然能为系统提供惯性支撑,实现对交流系统的一次调频,但仍属于频率有差调节,未能充分发挥换流器的灵活调节的优点。针对上述问题,结合MMC-MTDC系统功率-电压的改进下垂控制方法,提出了一种改进虚拟同步发电机(improved virtual synchronous generator,IVSG)的受端换流器控制策略。该策略在保留CVSG控制中的惯性参数和阻尼参数的基础上,引入频率偏差的积分控制,使换流器参与交流系统二次调频工作,通过与其他受端换流器的协调配合,实现对交流系统频率的无差控制。基于Opal-RT仿真平台,搭建包含集群风场在内的5端31电平MMC-MTDC输电系统模型,设计MMC-MTDC系统不同的运行工况,对所提出的控制策略进行仿真验证。仿真结果表明,在直流系统功率发生波动时,所提控制策略具有合理分配受端功率、增加换流器惯性和参与交流系统二次调频的能力。展开更多
多端柔性直流输电系统(voltage source converter based multi-terminal direct current system,VSC-MTDC)是在两端直流输电基础上发展而来的直流输电系统,可靠性高、适用于海上风电并网等场景,相应的控制策略更加多样,其潮流模型也更...多端柔性直流输电系统(voltage source converter based multi-terminal direct current system,VSC-MTDC)是在两端直流输电基础上发展而来的直流输电系统,可靠性高、适用于海上风电并网等场景,相应的控制策略更加多样,其潮流模型也更加复杂。该文分析VSC换流站和MTDC的稳态模型,研究可适用于VSC-MTDC的不同拓扑和连接方式的潮流模型;研究多端直流各种控制策略潮流计算模型的不同点并推导出其方程。在此基础上,提出一种兼具统一迭代法和交替迭代法优点的含VSC-MTDC交直流系统潮流算法,给出初值和边界条件求解方法,对于不同直流拓扑和交流系统都能够进行求解。最后通过2个实际算例验证该文潮流模型的有效性和收敛性,对于不同控制方式、不同运行场景和直流拓扑都能够迅速、稳定收敛。展开更多
基金supported by the Key Science and Technology Projects of China Southern Power Grid Corporation(No.090000KK52180116)National Natural Science Foundation of China(No.51807135)。
文摘Featuring low communication requirements and high reliability,the voltage droop control method is widely adopted in the voltage source converter based multi-terminal direct current(VSC-MTDC)system for autonomous DC voltage regulation and power-sharing.However,the traditional voltage droop control method with fixed droop gain is criticized for over-limit DC voltage deviation in case of large power disturbances,which can threaten stable operation of the entire VSCMTDC system.To tackle this problem,this paper proposes an adaptive reference power based voltage droop control method,which changes the reference power to compensate the power deviation for droop-controlled voltage source converters(VSCs).Besides retaining the merits of the traditional voltage droop control method,both DC voltage deviation reduction and power distribution improvement can be achieved by utilizing local information and a specific control factor in the proposed method.Basic principles and key features of the proposed method are described.Detailed analyses on the effects of the control factor on DC voltage deviation and imbalanced power-sharing are discussed,and the selection principle of the control factor is proposed.Finally,the effectiveness of the proposed method is validated by the simulations on a five-terminal VSC based high-voltage direct current(VSC-HVDC)system.
基金This work was supported in part by the National Natural Science Foundation of China under Grant No.51977142.
文摘An equivalent source-load MTDC system including DC voltage control units,power control units and interconnected DC lines is considered in this paper,which can be regarded as a generic structure of low-voltage DC microgrids,mediumvoltage DC distribution systems or HVDC transmission systems with a common DC bus.A reduced-order model is proposed with a circuit structure of a resistor,inductor and capacitor in parallel for dynamic stability analysis of the system in DC voltage control timescale.The relationship between control parameters and physical parameters of the equivalent circuit can be found,which provides an intuitive insight into the physical meaning of control parameters.Employing this model,a second-order characteristic equation is further derived to investigate system dynamic stability mechanisms in an analytical approach.As a result,the system oscillation frequency and damping are characterized in a straight forward manner,and the role of electrical and control parameters and different system-level control strategies in system dynamic stability in DC voltage control timescale is defined.The effectiveness of the proposed reduced-order model and the correctness of the theoretical analysis are verified by simulation based on PSCAD/EMTDC and an experiment based on a hardware low-voltage MTDC system platform.
基金This work is supported by UK EPSRC and UK National Grid.
文摘This paper investigates a control and protection strategy for a four-terminal modular multilevel converter(MMC)based high-voltage direct current(HVDC)system under a converter-side AC fault.Based on the system operating condition,a control and protection strategy against the fault with normal blocking of the converter is proposed.In practical,applications encountering such a fault,the MMC at the fault side may experience different conditions of blocking failure.The blocking failures may occur on:①the whole converter;②one converter arm;③one sub-module(SM)/several SMs of one converter arm;④other conditions.The phenomenon of the multi-terminal HVDC(MTDC)system following the fault is analyzed under the first three conditions with real-time simulations using the real-time digital simulator(RTDS).Based on the impact of different conditions on the MTDC system,the necessity of utilizing special control and protection is discussed.A special control and protection strategy is proposed for emergency conditions,and its effectiveness is verified by real-time simulation results.
基金supported by the National Nature Science Foundation of China(51621065,51567021)Independent Research Program of Tsinghua University(20151080416)China Postdoctoral Science Foundation(2016M601025).
文摘In this paper,a VSG(virtual synchronous generator)-based method with adaptive active power and DC voltage droop is proposed for the control of VSC stations in the multi-terminal DC(MTDC)system.This control strategy can improve the inertial level of the AC networks and attenuate the rate of change of frequency when a disturbance occurs.In addition,the droop control of the active power and DC voltage is implemented to make the AC networks share the unbalanced power in the MTDC.The droop coefficients are adaptively adjusted depending on the frequency margin of every AC network,which makes the allocation of unbalanced power among AC networks more reasonable from the frequency variation perspective.The control strategy is evaluated in the scenarios of sudden load change and wind turbine tripping,and the results are presented to demonstrate its effectiveness.
文摘Multi terminal VSC-HVDC systems are a promising solution to the problem of connecting offshore wind farms to AC grids.Optimal power sharing and appropriate control of DC-link voltages are essential and must be maintained dur-ing the operation of VSC-MTDC systems,particularly in post-contingency conditions.The traditional droop control methods cannot satisfy these requirements,and accordingly,this paper proposes a novel centralized control strategy based on a look-up table to ensure optimal power sharing and minimum DC voltage deviation immediately during post-contingency conditions by considering converter limits.It also reduces destructive effects(e.g.,frequency devia-tion)on onshore AC grids and guarantees the stable operation of the entire MTDC system.The proposed look-up table is an array of data that relates operating conditions to optimal droop coefficients and is determined according to N-1 contingency analysis and a linearized system model.Stability constraints and contingencies such as wind power changes,converter outage,and DC line disconnection are considered in its formation procedure.Simulations performed on a 4-terminal VSC-MTDC system in the MATLAB-Simulink environment validate the effectiveness and superiority of the proposed control strategy.
基金made use of the Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under NSF award (No. EEC-1041877)the CURENT Industry Partnership Program。
文摘To better utilize the diversity of renewable energies in the U. S., this paper proposes a cross-seam hybrid multi-terminal high-voltage direct current(MTDC) system for the integration of different types of renewable energies in the U. S.Based on a developed station-hybrid converter design, the proposed hybrid MTDC system further investigates the connection methods of renewable energies and develops novel flexible power flow control strategies for realizing uninterrupted integration of renewable energies. In addition, the frequency response control of the hybrid MTDC system is proposed by utilizing the coordination between the converters in the hybrid MTDC system.The feasibility of the hybrid MTDC system and the performance of its corresponding control strategies are conducted in the PSCAD/EMTDC simulation. The simulation results indicate that the proposed hybrid MTDC system could realize the uninterrupted integration of renewable energies and flexible power transmission to both coasts of U.S.
文摘在基于模块化多电平流器的多端柔性直流输电(modular multi-level converter based multi-terminal high voltage direct current system,MMC-MTDC)系统中,PI双环解耦的直接电流控制(double-loop direct current,DLDC)无法为系统提供惯性,而常规虚拟同步发电机(conventional virtual synchronous generator,CVSG)控制虽然能为系统提供惯性支撑,实现对交流系统的一次调频,但仍属于频率有差调节,未能充分发挥换流器的灵活调节的优点。针对上述问题,结合MMC-MTDC系统功率-电压的改进下垂控制方法,提出了一种改进虚拟同步发电机(improved virtual synchronous generator,IVSG)的受端换流器控制策略。该策略在保留CVSG控制中的惯性参数和阻尼参数的基础上,引入频率偏差的积分控制,使换流器参与交流系统二次调频工作,通过与其他受端换流器的协调配合,实现对交流系统频率的无差控制。基于Opal-RT仿真平台,搭建包含集群风场在内的5端31电平MMC-MTDC输电系统模型,设计MMC-MTDC系统不同的运行工况,对所提出的控制策略进行仿真验证。仿真结果表明,在直流系统功率发生波动时,所提控制策略具有合理分配受端功率、增加换流器惯性和参与交流系统二次调频的能力。
文摘多端柔性直流输电系统(voltage source converter based multi-terminal direct current system,VSC-MTDC)是在两端直流输电基础上发展而来的直流输电系统,可靠性高、适用于海上风电并网等场景,相应的控制策略更加多样,其潮流模型也更加复杂。该文分析VSC换流站和MTDC的稳态模型,研究可适用于VSC-MTDC的不同拓扑和连接方式的潮流模型;研究多端直流各种控制策略潮流计算模型的不同点并推导出其方程。在此基础上,提出一种兼具统一迭代法和交替迭代法优点的含VSC-MTDC交直流系统潮流算法,给出初值和边界条件求解方法,对于不同直流拓扑和交流系统都能够进行求解。最后通过2个实际算例验证该文潮流模型的有效性和收敛性,对于不同控制方式、不同运行场景和直流拓扑都能够迅速、稳定收敛。