Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat...Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu tion patterns of void fraction in the wallheated tube were analyzed. It was found that the average void fraction in creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub cooled temperature. The local void fraction exhibited a Ushape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient aalnst experimental measurements, which demonstrated the accuracy of the numerical model.展开更多
本文应用MUSIG模型和均一直径模型对某溶液堆台架模型堆芯内气液流动传热进行了数值模拟.在MUSIG模型中堆芯内离散相气泡被分为5组不同直径的气泡,用于分析堆芯内气泡的流动变化和大小分布,采用Luo and Svendsen和Prince and Blanch模...本文应用MUSIG模型和均一直径模型对某溶液堆台架模型堆芯内气液流动传热进行了数值模拟.在MUSIG模型中堆芯内离散相气泡被分为5组不同直径的气泡,用于分析堆芯内气泡的流动变化和大小分布,采用Luo and Svendsen和Prince and Blanch模型描述不同直径气泡组间的破裂和聚合.在均一直径模型中,堆芯内的气体被考虑为同一直径的组分,并且不考虑其破裂与聚合现象。计算得到采用两个模型的模拟结果并且对其进行了对比研究.结果显示应用MUSIG模型的计算结果与台架实验结果吻合更好.展开更多
基金Supported by the National Natural Science Foundation of China (51106119, 81100707), the Fundamental Research Funds for the Central University of China, Doctoral Fund of Ministry of Education (20110201120052) and the National Science and Technology Sur0orting Item (2012BAA08B03).
文摘Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu tion patterns of void fraction in the wallheated tube were analyzed. It was found that the average void fraction in creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub cooled temperature. The local void fraction exhibited a Ushape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient aalnst experimental measurements, which demonstrated the accuracy of the numerical model.
文摘本文应用MUSIG模型和均一直径模型对某溶液堆台架模型堆芯内气液流动传热进行了数值模拟.在MUSIG模型中堆芯内离散相气泡被分为5组不同直径的气泡,用于分析堆芯内气泡的流动变化和大小分布,采用Luo and Svendsen和Prince and Blanch模型描述不同直径气泡组间的破裂和聚合.在均一直径模型中,堆芯内的气体被考虑为同一直径的组分,并且不考虑其破裂与聚合现象。计算得到采用两个模型的模拟结果并且对其进行了对比研究.结果显示应用MUSIG模型的计算结果与台架实验结果吻合更好.