MX-80 bentonite was detected using acid-based titration, XRD and FTIR in detail. The sorption behavior of 63Ni(II) from aqueous solution to MX-80 bentonite was investigated as a function of solid content, ionic streng...MX-80 bentonite was detected using acid-based titration, XRD and FTIR in detail. The sorption behavior of 63Ni(II) from aqueous solution to MX-80 bentonite was investigated as a function of solid content, ionic strength and pH by using batch technique. The experimental data of 63Ni(II) sorption on MX-80 bentonite was obtained using the diffuse layer model (DLM) with the aid of FITEQL 3.1 program. The results indicated that the sorption of 63Ni(II) on MX-80 bentonite was mainly dominated by surface complexation, and cation exchange also contributed partly to 63Ni(II) sorption at low pH values. The sorption isotherms were simulated by Langmuir and Freundlich models, and the results indicated that Freundlich isotherm model fitted the sorption data better than the Langmuir isotherm model. The results are crucial to evaluate the sorption and migration of radionickel in MX-80 bentonite.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20501019 and J0630962)973 Projects (Grant No. 2007CB936602)
文摘MX-80 bentonite was detected using acid-based titration, XRD and FTIR in detail. The sorption behavior of 63Ni(II) from aqueous solution to MX-80 bentonite was investigated as a function of solid content, ionic strength and pH by using batch technique. The experimental data of 63Ni(II) sorption on MX-80 bentonite was obtained using the diffuse layer model (DLM) with the aid of FITEQL 3.1 program. The results indicated that the sorption of 63Ni(II) on MX-80 bentonite was mainly dominated by surface complexation, and cation exchange also contributed partly to 63Ni(II) sorption at low pH values. The sorption isotherms were simulated by Langmuir and Freundlich models, and the results indicated that Freundlich isotherm model fitted the sorption data better than the Langmuir isotherm model. The results are crucial to evaluate the sorption and migration of radionickel in MX-80 bentonite.