Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advance...Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future.展开更多
PhaseNet and EQTransformer are two state-of-the-art earthquake detection methods that have been increasingly applied worldwide.To evaluate the generaliz-ation ability of the two models and provide insights for the dev...PhaseNet and EQTransformer are two state-of-the-art earthquake detection methods that have been increasingly applied worldwide.To evaluate the generaliz-ation ability of the two models and provide insights for the development of new models,this study took the sequences of the Yunnan Yangbi M6.4 earthquake and Qinghai Maduo M7.4 earthquake as examples to compare the earthquake detection effects of the two abovementioned models as well as their abilities to process dense seismic sequences.It has been demonstrated from the corresponding research that due to the differences in seismic waveforms found in different geographical regions,the picking performance is reduced when the two models are applied directly to the detection of the Yangbi and Maduo earthquakes.PhaseNet has a higher recall than EQTransformer,but the recall of both models is reduced by 13%-56%when compared with the results rep-orted in the original papers.The analysis results indicate that neural networks with deeper layers and complex structures may not necessarily enhance earthquake detection perfor-mance.In designing earthquake detection models,attention should be paid to not only the balance of depth,width,and architecture but also to the quality and quantity of the training datasets.In addition,noise datasets should be incorporated during training.According to the continuous waveforms detected 21 days before the Yangbi and Maduo earthquakes,the Yangbi earthquake exhibited foreshock,while the Maduo earthquake showed no foreshock activity,indicating that the two earthquakes’nucleation processes were different.展开更多
The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_...The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_(S)>7.0 have occurred in the past 25 years.Here,we combined interferometric synthetic aperture radar,GPS,and teleseismic data to study the coseismic slip distribution,fault geometry,and dynamic source rupture process of the Maduo earthquake.We found that the overall coseismic deformation field of the Maduo earthquake is distributed in the NWW-SEE direction along 285°.There was slight bending at the western end and two branches at the eastern end.The maximum slip is located near the eastern bending area on the northern branch of the fault system.The rupture nucleated on the Jiangcuo fault and propagated approximately 160 km along-strike in both the NWW and SEE directions.The characteristic source rupture process of the Maduo earthquake is similar to that of the 2010 M_(W)6.8 Yushu earthquake,indicating that similar earthquakes with large-expansion surface ruptures and small shallow slip deficits can occur on both the internal fault and boundary fault of the Bayan Har block.展开更多
Understanding the relationship between precursory deformation anomalies and strong earthquakes is vital for physical earthquake prediction. Six months before the 2021 MS7.4 Maduo earthquake in Qinghai province, China,...Understanding the relationship between precursory deformation anomalies and strong earthquakes is vital for physical earthquake prediction. Six months before the 2021 MS7.4 Maduo earthquake in Qinghai province, China, the vertical pendulum at the Songpan station was observed to tilt southward with a high rate and large amplitude. Studies conducted before the 2021 MS7.4 Maduo earthquake inferred the tilt anomaly to be an earthquake precursor. However, after the earthquake, the relation between the earthquake and the anomaly became controversial, partly because the Songpan station is located at a great distance from the epicenter. In this study, based on the deformation anomaly characteristics, relationship between the seismogenic fault and the fault near the anomaly, and associated quantitative analyses, we concluded that this anomaly may be associated with the 2021 MS7.4 Maduo earthquake. The duration and amplitude of this anomaly matched with the magnitude and epicenter distance of the Maduo earthquake. We have also interpreted the reason why the anomaly occurred near a fault that is obliquely intersected with the seismogenic fault and why the anomaly is located far from the earthquake epicenter.展开更多
An M_(S)7.4 earthquake struck west China in Maduo county,Guoluo prefecture,Qinghai province on May 22,2021,at 2:04 Beijing time(18:04 UTC on May 21,2021),which broke the quiet period of Chinese mainland for 1382 days ...An M_(S)7.4 earthquake struck west China in Maduo county,Guoluo prefecture,Qinghai province on May 22,2021,at 2:04 Beijing time(18:04 UTC on May 21,2021),which broke the quiet period of Chinese mainland for 1382 days without earthquakes of magnitude 7 or higher.The analysis of the seismic data sequence would play an important role in the in-depth study of the Maduo earthquake and the Bayan Har block.The Institute of Geophysics,China Earthquake Administration(CEA),compiled observation data recorded through 57 broadband seismometers within 500 km of the earthquake epicenter and intended to share for further researches in earthquake science community.The shared dataset included waveforms of the event and its sequence with magnitudes of 3.0 or higher that occurred between May 22-31,2021 with a sampling rate of 100 sps along with the continuous waveforms of 20 Hz and 100 Hz.Additionally,the seismic instrument response files also were shared.The event and continuous waveform records could be downloaded by submitting a request through the web platform of the Earthquake Science Data Center of the Institute of Geophysics,CEA(www.esdc.ac.cn).展开更多
The area of desertified land has increased by 27.3% from 1987 to 2000 in Maduo County,northeastern Qinghai-Tibet Plateau.Driving forces of land degradation has been extensively studied in the region.Using Factor Analy...The area of desertified land has increased by 27.3% from 1987 to 2000 in Maduo County,northeastern Qinghai-Tibet Plateau.Driving forces of land degradation has been extensively studied in the region.Using Factor Analysis (FA),we evaluate contribution of human activity and natural environmental change to land degradation.Four common factors were extracted in this study.The result shows that climate related other than human-related factors,are the major inducing factors of land degradation in Maduo County.Climate change and consequent change of permafrost account for 70% to the land degradation.Increasing evaporation and declining precipitation in the beginning of the growing season hamper seedling establishment.Decreasing frozen days and rising active layer lower bound make surface soil loose and less soil moisture available for plant.展开更多
The most important method of understanding liquefaction-induced engineering failures comes from the investigation and analysis of earthquake damage.In May 2021,the Maduo M_(s)7.4 earthquake occurred on the Tibetan Pla...The most important method of understanding liquefaction-induced engineering failures comes from the investigation and analysis of earthquake damage.In May 2021,the Maduo M_(s)7.4 earthquake occurred on the Tibetan Plateau of China.The most representative engineering disaster caused by this earthquake was bridge damage on liquefied sites.In this study,the mutual relationships between the anti-liquefaction pre-design situation,the ground motion intensity,the site liquefaction severity,and the bridge damage state for this earthquake were systematically analyzed for typical bridge damage on the liquefied sites.Using field survey data and the current Chinese industry code,simulations of the liquefaction scenarios at typical bridge sites were performed for the pre-design seismic ground motion before the earthquake and the seismic ground motion during the earthquake.By combining these results with post-earthquake investigation results,the reason for the serious bridge damage resulting from this earthquake is revealed,and the necessary conditions for avoiding serious seismic damage to bridges built in liquefiable sites is presented.展开更多
In this study,the broadband ground motions of the 2021 M7.4 Maduo earthquake were simulated to overcome the scarcity of ground motion recordings and the low resolution of macroseismic intensity map in sparsely populat...In this study,the broadband ground motions of the 2021 M7.4 Maduo earthquake were simulated to overcome the scarcity of ground motion recordings and the low resolution of macroseismic intensity map in sparsely populated high-altitude regions.The simulation was conducted with a hybrid methodology,combining a stochastic high-frequency simulation with a low-frequency ground motion simulation,from the regional 1-D velocity structure model and the Wang WM et al.(2022)source rupture model,respectively.We found that the three-component waveforms simulated for specific stations matched the waveforms recorded at those stations,in terms of amplitude,duration,and frequency content.The validation results demonstrate the ability of the hybrid simulation method to reproduce the main characteristics of the observed ground motions for the 2021 Maduo earthquake over a broad frequency range.Our simulations suggest that the official map of macroseismic intensity tends to overestimate shaking by one intensity unit.Comparisons of simulations with empirical ground motion models indicate generally good consistency between the simulated and empirically predicted intensity measures.The high-frequency components of ground motions were found to be more prominent,while the low-frequency components were not,which is unexpected for large earthquakes.Our simulations provide valuable insight into the effects of source complexity on the level and variability of the resulting ground motions.The acceleration and velocity time histories and corresponding response spectra were provided for selected representative sites where no records were available.The simulated results have important implications for evaluating the performance of engineering structures in the epicentral regions of this earthquake and for estimating seismic hazards in the Tibetan regions where no strong ground motion records are available for large earthquakes.展开更多
The 2021 Qinghai Maduo M_(S)7.4 earthquake was one of the strongest earthquakes that occurred in the Bayan Har block of the Tibetan Plateau during the past 30 years,which spatially filled in the gap of strong earthqua...The 2021 Qinghai Maduo M_(S)7.4 earthquake was one of the strongest earthquakes that occurred in the Bayan Har block of the Tibetan Plateau during the past 30 years,which spatially filled in the gap of strong earthquake in the eastern section of the northern block boundary.In this study,the aftershock sequence within 8 days after the mainshock was relocated by double difference algorithm.The results show that the total length of the aftershock zone is approximately 170 km;the mainshock epicenter is located in the center of the aftershock zone,indicating a bilateral rupture.The aftershocks are mainly distributed along NWW direction with an overall strike of 285°.The focal depth profiles indicate that the seismogenic fault is nearly vertical and dips to southwest or northeast in different sections,indicating a complex geometry.There is an aftershock gap located to the southeast of the mainshock epicenter with a scale of approximately 20 km.At the eastern end of the aftershock zone,horsetaillike branch faults show the terminal effect of a large strike-slip fault.There is a NW-trending aftershock zone on the north side of the western section,which may be a branch fault triggered by the mainshock.The location of the aftershock sequence is close to the eastern section of the Kunlun Mountain Pass-Jiangcuo(KMPJ)fault.The sequence overlaps well with surface trace of the KMPJ fault.We speculate that the KMPJ fault is the main seismogenic fault of the M_(S)7.4 Maduo earthquake.展开更多
Seismic and field observations indicate that the Mw7.4 Maduo earthquake ruptured the Jiangcuo fault,which is a secondary fault~85 km south of the northern boundary of the Bayan Hor block in western China.The kinematic...Seismic and field observations indicate that the Mw7.4 Maduo earthquake ruptured the Jiangcuo fault,which is a secondary fault~85 km south of the northern boundary of the Bayan Hor block in western China.The kinematic characteristics of the Jiangcuo fault can shed lights on the seismogenic mechanism of this earthquake.Slip rate is one of the key parameters to describe the kinematic features of a fault,which can also provide quantitative evidences for regional seismic hazard assessments.However,due to lack of effective observations,the slip rate of the Jiangcuo fault has not been studied quantitatively.In this study,we consider the interaction between the Jiangcuo fault and the eastern Kunlun fault,and estimate the slip rates of the two faults using the interseismic GPS observations across the seismogenic region.The inferred results show that the slip rates of the Jiangcuo fault and the Tuosuo Lake segment of the Kunlun fault are 1.2±0.8 and 5.4±0.3 mm a^(-1),respectively.Combining the slip rate with the average slip inferred from the coseismic slip model,the earthquake recurrence interval of the Jiangcuo fault is estimated to be 1800700+3700 years(1100–5500 years).Based on the results derived from previous studies,as well as calculations in this study,we infer that the slip rate of the Kunlun fault may decrease gradually from the Tuosuo Lake segment to the eastern tip.The Jiangcuo fault and its adjacent parallel secondary faults may have absorbed the relative motion of blocks together with the Kunlun fault.展开更多
On 22 May 2021,the Maduo Earthquake occurred on a branch fault of the East Kunlun fault in the Bayan Har Block,which provides opportunity to constrain fault geometry and strain accumulation and release for assessment ...On 22 May 2021,the Maduo Earthquake occurred on a branch fault of the East Kunlun fault in the Bayan Har Block,which provides opportunity to constrain fault geometry and strain accumulation and release for assessment of earthquake hazards.We processed the Sentinal-1A/B SAR images acquired before and after the earthquake,with which we constrained a finite fault model to best fit to the combined data set of downsampled InSAR image and GPS displacements.The inversion indicates that the Maduo event ruptured a 160 km long section striking 286.5°and a dipping 81.39°with rake angle of 4.62°.The model suggests three compact rupture areas with the slip amplitude exceeding 4 m on the main rupture section and the largest slip region is in the east of the epicenter with a slip of approximately 4.6 m below the surface,in a good agreement with the field geological survey.The total geodetic moment is 1.67×10^(20) N·m equivalent to Mw7.44,slightly larger than estimate of the USGS.展开更多
On 22 nd May 2021(local time),an earthquake of M_(s)7.4 struck Maduo county in Qinghai Province,China.This was the largest earthquake in China since the 2008 Wenchuan earthquake.In this study,ascending/descending Sent...On 22 nd May 2021(local time),an earthquake of M_(s)7.4 struck Maduo county in Qinghai Province,China.This was the largest earthquake in China since the 2008 Wenchuan earthquake.In this study,ascending/descending Sentinel-1 and advanced land observation satellite-2(ALOS-2)synthetic aperture radar(SAR)images were used to derive the three-dimensional(3-D)coseismic displacements of this earthquake.We used the differential interferometric SAR(In SAR,DIn SAR),pixel offset-tracking(POT),multiple aperture In SAR(MAI),and burst overlap interferometry(BOI)methods to derive the displacement observations along the line-of-sight(LOS)and azimuth directions.To accurately mitigate the effect of ionospheric delay on the ALOS-2 DIn SAR observations,a polynomial fitting method was proposed to optimize range-spectrum-split-derived ionospheric phases.In addition,the 3-D displacement field was obtained by a strain model and variance component estimation(SM-VCE)method based on the high-quality SAR displacement observations.Results indicated that a left-lateral fault slip with the largest horizontal displacement of up to 2.4 m dominated this earthquake,and the small-magnitude vertical displacement with an alternating uplift/subsidence pattern along the fault trace was more concentrated in the near-fault regions.Comparison with the global navigation satellite system data indicated that the SM-VCE method can significantly improve the accuracy of the displacements compared to the classical weighted least squares method,and the incorporation of the BOI displacements can substantially benefit the accuracy of north-south displacement.In addition to the displacements,three coseismic strain invariants calculated based on the strain model parameters were also investigated.It was found that the eastern and western parts of the faults suffered more significant strains compared with the epicenter region.展开更多
On May 22,2021,a Mw 7.3 earthquake occurred in Maduo County,Qinghai Province with the epicenter of 34.59°N,98.34°E.The distribution of aftershocks and surface ruptures suggested that the seismogenic structur...On May 22,2021,a Mw 7.3 earthquake occurred in Maduo County,Qinghai Province with the epicenter of 34.59°N,98.34°E.The distribution of aftershocks and surface ruptures suggested that the seismogenic structure might be the Jiangcuo fault(JF),~70 km south of East Kunlun fault(EKLF).Due to the high altitude and sparse human habitats,there are very few researches on the Jiangcuo fault,which makes us know little about the deformation features and even the geometry of Jiangcuo fault.In this study,we used the high-resolution pre-earthquake satellite images to interpret the spatial distribution and geometry of the Jiangcuo fault.Our results show that the Jiangcuo fault strikes nearly east,extending 180-km-long from Eling Lake to east of Changmahe Town.Based on the geometric features,the Jiangcuo fault could be divided into three segments characterized as the linear structures,fault valleys,scarps and systematic offset of channels.The boundary between Bayan Har Block and Qaidam Block is presented as a wide deformation zone named of Kunlun belt that is composed of East Kunlun fault and several branch faults around Anemaqen Mountain.Geometric analysis and deep lithosphere structure around Maduo County suggest that the Jiangcuo fault should be one of branch of East Kunlun fault at south,where the Kunlun fault developed as a giant flower structure.In addition,the seismic hazards potential of Jiangcuo fault should be given enough attention in the future,because west of the Jiangcuo fault,there is a rupture gap between the co-seismic surface ruptures of the 2001 Kunlun,2021 Maduo and 1937 Huashixia Earthquakes.展开更多
On May 22 nd,2021,an MS7.4 earthquake occurred near the Maduo county of the Qinghai Province,China,within the Bayan Har Block.Seismic activities have been intense in this block,thus whether the Maduo Earthquake will b...On May 22 nd,2021,an MS7.4 earthquake occurred near the Maduo county of the Qinghai Province,China,within the Bayan Har Block.Seismic activities have been intense in this block,thus whether the Maduo Earthquake will bring subsequent seismic hazards to its surrounding regions raises wide concerns.In this paper,we first calculated the Coulomb failure stress changes caused by the Maduo Earthquake on nearby faults,and estimated how much these faults are brought closer or further from their next failures based on their stressing rates.Next,we combined the Coulomb failure stress changes with the rate-state frictional law to estimate the seismicity rate in the study region in the next decade.A declustered catalogue before the Maduo Earthquake was adopted to calculate background seismicity rate,and rate-state parameters are constrained by fault slip rates.Our results show that the Maduo Earthquake increases stress accumulations in the northwestern portion of the Qingshuihe fault(0.02 MPa at maximum),the two ends of the Kunlun Mountain Pass-Jiangcuo fault(0.01 MPa at maximum),and the northwestern portion of the Maduo-Gande fault(on average~0.09 MPa),and seismicity rates are expected to increase near these faults.What is especially worth noting is the seismic hazard in the region extending from the eastern end of the Kunlun Mountain Pass-Jiangcuo fault to the Maqin-Maqu seismic gap on the Eastern Kunlun fault,which is calculated to have experienced a maximum stress increase of 0.67 MPa after the Maduo Earthquake.On the other hand,stress accumulations are reduced in the southern end of the Elashan fault,the Eastern Kunlun fault segment to the west of Maduo,and the northwestern portion of the Dari fault.Seismic hazards are expected to be low in these regions.For the study region as a whole,the probability of an M≥6 earthquake taking place in the next decade is estimated to be 59%,about twice the value calculated for the time period before the Maduo Earthquake.展开更多
Currently available earthquake attenuation equations are locally applicable,and methods based on observation data are not applicable in areas without available observation data.To solve the above problems and further ...Currently available earthquake attenuation equations are locally applicable,and methods based on observation data are not applicable in areas without available observation data.To solve the above problems and further improve the prediction accuracy of ground motion parameters,we present a prediction model referred to as a light gradient boosting machine with feature selection(LGB-FS).It is based on a light gradient boosting machine(LightGBM)constructed using historical strong motion data from the NGA-west2 database and can quickly simulate the distribution of strong motion near the epicenter after an earthquake.Cases study shows that compared with GMPE methods and those based on real-time observation data,the model has a better prediction effect in areas without available observation data and can be applied to Yangbi Earthquake and Maduo Earthquake.The feature importance evaluation based on both information gains and partial dependence plots(PDPs)reveals the complex relationships between multiple factors and ground motion parameters,allowing us to better understand their mechanisms and connections.展开更多
基金supported by Grants from the National Natural Science Foundation of China(42004010)the Beijing Natural Science Foundation(8204077)。
文摘Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future.
基金funded by the National Key R&D Program of China(No.2021YFC3000702)the National Natural Science Foundation of China(No.41774067)the Fundamental Research Funds for the Institute of Geophysics,China Earthquake Administration(Nos.DQ JB21Z05,DQJB20X07).
文摘PhaseNet and EQTransformer are two state-of-the-art earthquake detection methods that have been increasingly applied worldwide.To evaluate the generaliz-ation ability of the two models and provide insights for the development of new models,this study took the sequences of the Yunnan Yangbi M6.4 earthquake and Qinghai Maduo M7.4 earthquake as examples to compare the earthquake detection effects of the two abovementioned models as well as their abilities to process dense seismic sequences.It has been demonstrated from the corresponding research that due to the differences in seismic waveforms found in different geographical regions,the picking performance is reduced when the two models are applied directly to the detection of the Yangbi and Maduo earthquakes.PhaseNet has a higher recall than EQTransformer,but the recall of both models is reduced by 13%-56%when compared with the results rep-orted in the original papers.The analysis results indicate that neural networks with deeper layers and complex structures may not necessarily enhance earthquake detection perfor-mance.In designing earthquake detection models,attention should be paid to not only the balance of depth,width,and architecture but also to the quality and quantity of the training datasets.In addition,noise datasets should be incorporated during training.According to the continuous waveforms detected 21 days before the Yangbi and Maduo earthquakes,the Yangbi earthquake exhibited foreshock,while the Maduo earthquake showed no foreshock activity,indicating that the two earthquakes’nucleation processes were different.
基金supported by grants of the K.C.Wong Education Foundation(No.GJTD-2019-04)Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK07)National Nature Science Foundation of China(No.41988101-0104)。
文摘The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_(S)>7.0 have occurred in the past 25 years.Here,we combined interferometric synthetic aperture radar,GPS,and teleseismic data to study the coseismic slip distribution,fault geometry,and dynamic source rupture process of the Maduo earthquake.We found that the overall coseismic deformation field of the Maduo earthquake is distributed in the NWW-SEE direction along 285°.There was slight bending at the western end and two branches at the eastern end.The maximum slip is located near the eastern bending area on the northern branch of the fault system.The rupture nucleated on the Jiangcuo fault and propagated approximately 160 km along-strike in both the NWW and SEE directions.The characteristic source rupture process of the Maduo earthquake is similar to that of the 2010 M_(W)6.8 Yushu earthquake,indicating that similar earthquakes with large-expansion surface ruptures and small shallow slip deficits can occur on both the internal fault and boundary fault of the Bayan Har block.
文摘Understanding the relationship between precursory deformation anomalies and strong earthquakes is vital for physical earthquake prediction. Six months before the 2021 MS7.4 Maduo earthquake in Qinghai province, China, the vertical pendulum at the Songpan station was observed to tilt southward with a high rate and large amplitude. Studies conducted before the 2021 MS7.4 Maduo earthquake inferred the tilt anomaly to be an earthquake precursor. However, after the earthquake, the relation between the earthquake and the anomaly became controversial, partly because the Songpan station is located at a great distance from the epicenter. In this study, based on the deformation anomaly characteristics, relationship between the seismogenic fault and the fault near the anomaly, and associated quantitative analyses, we concluded that this anomaly may be associated with the 2021 MS7.4 Maduo earthquake. The duration and amplitude of this anomaly matched with the magnitude and epicenter distance of the Maduo earthquake. We have also interpreted the reason why the anomaly occurred near a fault that is obliquely intersected with the seismogenic fault and why the anomaly is located far from the earthquake epicenter.
文摘An M_(S)7.4 earthquake struck west China in Maduo county,Guoluo prefecture,Qinghai province on May 22,2021,at 2:04 Beijing time(18:04 UTC on May 21,2021),which broke the quiet period of Chinese mainland for 1382 days without earthquakes of magnitude 7 or higher.The analysis of the seismic data sequence would play an important role in the in-depth study of the Maduo earthquake and the Bayan Har block.The Institute of Geophysics,China Earthquake Administration(CEA),compiled observation data recorded through 57 broadband seismometers within 500 km of the earthquake epicenter and intended to share for further researches in earthquake science community.The shared dataset included waveforms of the event and its sequence with magnitudes of 3.0 or higher that occurred between May 22-31,2021 with a sampling rate of 100 sps along with the continuous waveforms of 20 Hz and 100 Hz.Additionally,the seismic instrument response files also were shared.The event and continuous waveform records could be downloaded by submitting a request through the web platform of the Earthquake Science Data Center of the Institute of Geophysics,CEA(www.esdc.ac.cn).
基金funded by National Ministry of Science and Technology and the grant number is 2009CB421308
文摘The area of desertified land has increased by 27.3% from 1987 to 2000 in Maduo County,northeastern Qinghai-Tibet Plateau.Driving forces of land degradation has been extensively studied in the region.Using Factor Analysis (FA),we evaluate contribution of human activity and natural environmental change to land degradation.Four common factors were extracted in this study.The result shows that climate related other than human-related factors,are the major inducing factors of land degradation in Maduo County.Climate change and consequent change of permafrost account for 70% to the land degradation.Increasing evaporation and declining precipitation in the beginning of the growing season hamper seedling establishment.Decreasing frozen days and rising active layer lower bound make surface soil loose and less soil moisture available for plant.
基金Natural Science Foundation of Heilongjiang Province under Grant No.ZD2019E009Key Project of National Natural Science Foundation of China under Grant No.U1939209。
文摘The most important method of understanding liquefaction-induced engineering failures comes from the investigation and analysis of earthquake damage.In May 2021,the Maduo M_(s)7.4 earthquake occurred on the Tibetan Plateau of China.The most representative engineering disaster caused by this earthquake was bridge damage on liquefied sites.In this study,the mutual relationships between the anti-liquefaction pre-design situation,the ground motion intensity,the site liquefaction severity,and the bridge damage state for this earthquake were systematically analyzed for typical bridge damage on the liquefied sites.Using field survey data and the current Chinese industry code,simulations of the liquefaction scenarios at typical bridge sites were performed for the pre-design seismic ground motion before the earthquake and the seismic ground motion during the earthquake.By combining these results with post-earthquake investigation results,the reason for the serious bridge damage resulting from this earthquake is revealed,and the necessary conditions for avoiding serious seismic damage to bridges built in liquefiable sites is presented.
基金Financial support for this study was provided by the National Key Research and Development Project(No.2020YFA0710603)the Special Fund of the Institute Geophysics,China Earthquake Administration(No.DQJB22B27).
文摘In this study,the broadband ground motions of the 2021 M7.4 Maduo earthquake were simulated to overcome the scarcity of ground motion recordings and the low resolution of macroseismic intensity map in sparsely populated high-altitude regions.The simulation was conducted with a hybrid methodology,combining a stochastic high-frequency simulation with a low-frequency ground motion simulation,from the regional 1-D velocity structure model and the Wang WM et al.(2022)source rupture model,respectively.We found that the three-component waveforms simulated for specific stations matched the waveforms recorded at those stations,in terms of amplitude,duration,and frequency content.The validation results demonstrate the ability of the hybrid simulation method to reproduce the main characteristics of the observed ground motions for the 2021 Maduo earthquake over a broad frequency range.Our simulations suggest that the official map of macroseismic intensity tends to overestimate shaking by one intensity unit.Comparisons of simulations with empirical ground motion models indicate generally good consistency between the simulated and empirically predicted intensity measures.The high-frequency components of ground motions were found to be more prominent,while the low-frequency components were not,which is unexpected for large earthquakes.Our simulations provide valuable insight into the effects of source complexity on the level and variability of the resulting ground motions.The acceleration and velocity time histories and corresponding response spectra were provided for selected representative sites where no records were available.The simulated results have important implications for evaluating the performance of engineering structures in the epicentral regions of this earthquake and for estimating seismic hazards in the Tibetan regions where no strong ground motion records are available for large earthquakes.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1504103)the National Natural Science Foundation of China(Grant No.41774067)+1 种基金the Special Fund of the Institute of Geophysics,China Earthquake Administration(Grant No.DQJB20X07)S&T Program of Qinghai Province(Grant No.2020-ZJ-752).
文摘The 2021 Qinghai Maduo M_(S)7.4 earthquake was one of the strongest earthquakes that occurred in the Bayan Har block of the Tibetan Plateau during the past 30 years,which spatially filled in the gap of strong earthquake in the eastern section of the northern block boundary.In this study,the aftershock sequence within 8 days after the mainshock was relocated by double difference algorithm.The results show that the total length of the aftershock zone is approximately 170 km;the mainshock epicenter is located in the center of the aftershock zone,indicating a bilateral rupture.The aftershocks are mainly distributed along NWW direction with an overall strike of 285°.The focal depth profiles indicate that the seismogenic fault is nearly vertical and dips to southwest or northeast in different sections,indicating a complex geometry.There is an aftershock gap located to the southeast of the mainshock epicenter with a scale of approximately 20 km.At the eastern end of the aftershock zone,horsetaillike branch faults show the terminal effect of a large strike-slip fault.There is a NW-trending aftershock zone on the north side of the western section,which may be a branch fault triggered by the mainshock.The location of the aftershock sequence is close to the eastern section of the Kunlun Mountain Pass-Jiangcuo(KMPJ)fault.The sequence overlaps well with surface trace of the KMPJ fault.We speculate that the KMPJ fault is the main seismogenic fault of the M_(S)7.4 Maduo earthquake.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFC1500501 and 2017YFC1500305)the National Natural Science Foundation of China(Grant Nos.41674023 and 41304017).
文摘Seismic and field observations indicate that the Mw7.4 Maduo earthquake ruptured the Jiangcuo fault,which is a secondary fault~85 km south of the northern boundary of the Bayan Hor block in western China.The kinematic characteristics of the Jiangcuo fault can shed lights on the seismogenic mechanism of this earthquake.Slip rate is one of the key parameters to describe the kinematic features of a fault,which can also provide quantitative evidences for regional seismic hazard assessments.However,due to lack of effective observations,the slip rate of the Jiangcuo fault has not been studied quantitatively.In this study,we consider the interaction between the Jiangcuo fault and the eastern Kunlun fault,and estimate the slip rates of the two faults using the interseismic GPS observations across the seismogenic region.The inferred results show that the slip rates of the Jiangcuo fault and the Tuosuo Lake segment of the Kunlun fault are 1.2±0.8 and 5.4±0.3 mm a^(-1),respectively.Combining the slip rate with the average slip inferred from the coseismic slip model,the earthquake recurrence interval of the Jiangcuo fault is estimated to be 1800700+3700 years(1100–5500 years).Based on the results derived from previous studies,as well as calculations in this study,we infer that the slip rate of the Kunlun fault may decrease gradually from the Tuosuo Lake segment to the eastern tip.The Jiangcuo fault and its adjacent parallel secondary faults may have absorbed the relative motion of blocks together with the Kunlun fault.
文摘On 22 May 2021,the Maduo Earthquake occurred on a branch fault of the East Kunlun fault in the Bayan Har Block,which provides opportunity to constrain fault geometry and strain accumulation and release for assessment of earthquake hazards.We processed the Sentinal-1A/B SAR images acquired before and after the earthquake,with which we constrained a finite fault model to best fit to the combined data set of downsampled InSAR image and GPS displacements.The inversion indicates that the Maduo event ruptured a 160 km long section striking 286.5°and a dipping 81.39°with rake angle of 4.62°.The model suggests three compact rupture areas with the slip amplitude exceeding 4 m on the main rupture section and the largest slip region is in the east of the epicenter with a slip of approximately 4.6 m below the surface,in a good agreement with the field geological survey.The total geodetic moment is 1.67×10^(20) N·m equivalent to Mw7.44,slightly larger than estimate of the USGS.
基金supported by the National Key Basic Research and Development Program of China(Grant No.2018YFC1503603)the National Natural Science Foundation of China(Grant No.42030112)+3 种基金the Nature Science Foundation of Hunan Province(Grant No.2020JJ2043)the Project of Innovation-driven Plan of Central South University(Grant No.2019CX007)the Fundamental Research Funds for the Central Universities of Central South University(Grant Nos.2018zzts684 and 2019zzts011)the Hunan Provincial Innovation Foundation For Postgraduate(Grant No.CX20190067)。
文摘On 22 nd May 2021(local time),an earthquake of M_(s)7.4 struck Maduo county in Qinghai Province,China.This was the largest earthquake in China since the 2008 Wenchuan earthquake.In this study,ascending/descending Sentinel-1 and advanced land observation satellite-2(ALOS-2)synthetic aperture radar(SAR)images were used to derive the three-dimensional(3-D)coseismic displacements of this earthquake.We used the differential interferometric SAR(In SAR,DIn SAR),pixel offset-tracking(POT),multiple aperture In SAR(MAI),and burst overlap interferometry(BOI)methods to derive the displacement observations along the line-of-sight(LOS)and azimuth directions.To accurately mitigate the effect of ionospheric delay on the ALOS-2 DIn SAR observations,a polynomial fitting method was proposed to optimize range-spectrum-split-derived ionospheric phases.In addition,the 3-D displacement field was obtained by a strain model and variance component estimation(SM-VCE)method based on the high-quality SAR displacement observations.Results indicated that a left-lateral fault slip with the largest horizontal displacement of up to 2.4 m dominated this earthquake,and the small-magnitude vertical displacement with an alternating uplift/subsidence pattern along the fault trace was more concentrated in the near-fault regions.Comparison with the global navigation satellite system data indicated that the SM-VCE method can significantly improve the accuracy of the displacements compared to the classical weighted least squares method,and the incorporation of the BOI displacements can substantially benefit the accuracy of north-south displacement.In addition to the displacements,three coseismic strain invariants calculated based on the strain model parameters were also investigated.It was found that the eastern and western parts of the faults suffered more significant strains compared with the epicenter region.
基金supported by National Nonprofit Fundamental Research Grant of China,Institute of Geology,China,Earthquake Administration(Nos.IGCEA1803IGCEA2110)。
文摘On May 22,2021,a Mw 7.3 earthquake occurred in Maduo County,Qinghai Province with the epicenter of 34.59°N,98.34°E.The distribution of aftershocks and surface ruptures suggested that the seismogenic structure might be the Jiangcuo fault(JF),~70 km south of East Kunlun fault(EKLF).Due to the high altitude and sparse human habitats,there are very few researches on the Jiangcuo fault,which makes us know little about the deformation features and even the geometry of Jiangcuo fault.In this study,we used the high-resolution pre-earthquake satellite images to interpret the spatial distribution and geometry of the Jiangcuo fault.Our results show that the Jiangcuo fault strikes nearly east,extending 180-km-long from Eling Lake to east of Changmahe Town.Based on the geometric features,the Jiangcuo fault could be divided into three segments characterized as the linear structures,fault valleys,scarps and systematic offset of channels.The boundary between Bayan Har Block and Qaidam Block is presented as a wide deformation zone named of Kunlun belt that is composed of East Kunlun fault and several branch faults around Anemaqen Mountain.Geometric analysis and deep lithosphere structure around Maduo County suggest that the Jiangcuo fault should be one of branch of East Kunlun fault at south,where the Kunlun fault developed as a giant flower structure.In addition,the seismic hazards potential of Jiangcuo fault should be given enough attention in the future,because west of the Jiangcuo fault,there is a rupture gap between the co-seismic surface ruptures of the 2001 Kunlun,2021 Maduo and 1937 Huashixia Earthquakes.
基金supported by the National Key R&D Program of China(Grant No.2017YFC1500305)the National Natural Science Foundation of China(Grant Nos.41731072,41574095)。
文摘On May 22 nd,2021,an MS7.4 earthquake occurred near the Maduo county of the Qinghai Province,China,within the Bayan Har Block.Seismic activities have been intense in this block,thus whether the Maduo Earthquake will bring subsequent seismic hazards to its surrounding regions raises wide concerns.In this paper,we first calculated the Coulomb failure stress changes caused by the Maduo Earthquake on nearby faults,and estimated how much these faults are brought closer or further from their next failures based on their stressing rates.Next,we combined the Coulomb failure stress changes with the rate-state frictional law to estimate the seismicity rate in the study region in the next decade.A declustered catalogue before the Maduo Earthquake was adopted to calculate background seismicity rate,and rate-state parameters are constrained by fault slip rates.Our results show that the Maduo Earthquake increases stress accumulations in the northwestern portion of the Qingshuihe fault(0.02 MPa at maximum),the two ends of the Kunlun Mountain Pass-Jiangcuo fault(0.01 MPa at maximum),and the northwestern portion of the Maduo-Gande fault(on average~0.09 MPa),and seismicity rates are expected to increase near these faults.What is especially worth noting is the seismic hazard in the region extending from the eastern end of the Kunlun Mountain Pass-Jiangcuo fault to the Maqin-Maqu seismic gap on the Eastern Kunlun fault,which is calculated to have experienced a maximum stress increase of 0.67 MPa after the Maduo Earthquake.On the other hand,stress accumulations are reduced in the southern end of the Elashan fault,the Eastern Kunlun fault segment to the west of Maduo,and the northwestern portion of the Dari fault.Seismic hazards are expected to be low in these regions.For the study region as a whole,the probability of an M≥6 earthquake taking place in the next decade is estimated to be 59%,about twice the value calculated for the time period before the Maduo Earthquake.
基金supported by the National Key R&D Program of China(No.2017YFB0504104)the National Natural Science Foundation of China(No.41971280)。
文摘Currently available earthquake attenuation equations are locally applicable,and methods based on observation data are not applicable in areas without available observation data.To solve the above problems and further improve the prediction accuracy of ground motion parameters,we present a prediction model referred to as a light gradient boosting machine with feature selection(LGB-FS).It is based on a light gradient boosting machine(LightGBM)constructed using historical strong motion data from the NGA-west2 database and can quickly simulate the distribution of strong motion near the epicenter after an earthquake.Cases study shows that compared with GMPE methods and those based on real-time observation data,the model has a better prediction effect in areas without available observation data and can be applied to Yangbi Earthquake and Maduo Earthquake.The feature importance evaluation based on both information gains and partial dependence plots(PDPs)reveals the complex relationships between multiple factors and ground motion parameters,allowing us to better understand their mechanisms and connections.