When the high-pressure gas is exhausted to the vacuum chamber from the nozzle,the underexpanded supersonic jet contained with the Mach disk is generally formed.The eventual purpose of this study is to clarify the unst...When the high-pressure gas is exhausted to the vacuum chamber from the nozzle,the underexpanded supersonic jet contained with the Mach disk is generally formed.The eventual purpose of this study is to clarify the unsteady phenomenon of the underexpanded free jet when the back pressure continuously changes with time.The characteristic of the Mach disk has been clarified in consideration of the diameter and position of it by the numerical analysis in this paper.The sonic jet of the exit Mach number Me=1 is assumed and the axisymmetric conservational equation is solved by the TVD method in the numerical calculation.The diameter and position of the Mach disk differs with the results of a steady jet and the influence on the continuously changing of the back pressure is evidenced from the comparison with the case of steady supersonic jet.展开更多
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex...A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.展开更多
During a loss of vacuum accident(LOVA),the air ingress into a vacuum vessel(VV)may lead to radioactive dust resuspension,migration,and even explosion,thereby posing a great threat to the safe operation of future fusio...During a loss of vacuum accident(LOVA),the air ingress into a vacuum vessel(VV)may lead to radioactive dust resuspension,migration,and even explosion,thereby posing a great threat to the safe operation of future fusion reactors;thus,it is crucial to understand the flow characteristics and radioactive dust transport behavior induced by LOVA.However,only a few studies have identified the characteristics of the highly under-expanded jet flow at a scale of milliseconds during LOVA.Particularly,the occurrence and behavior of a Mach disk is yet to be captured in existing studies.In this study,we used a more advanced model with a finer mesh and adaptive mesh strategies to capture the Mach disk in a VV during LOVA.In detail,a computational fluid dynamics–discrete phase model one-way coupled multiphase approach was established using the computational fluid dynamics code ANSYS FLUENT and applied to the analysis during the first seconds of LOVA.The results showed that air ingress into the VV behaved like a highly free under-expanded jet at the initial stage and Mach disk was formed at~6 ms.Moreover,the flow field dramatically changed at the position of the Mach disk.The jet core before the Mach disk had a maximum velocity of~8 Mach with the corresponding lowest static pressure(~100 Pa)and temperature(few tens of K).The friction velocities in the lower part of the VV,which is an area of concern due to dust deposition,were generally larger than 15 m/s near the inlet region.Lastly,the crude prediction of the particle trajectories demonstrated the spiral trajectories of the dust following the air motion.Therefore,this study provided a basis for further safety analysis and accident prevention related to dust transport and explosion in future fusion reactors.展开更多
A two-dimensional axisymmetric model, employing a dynamic mesh and user-defined functions, is used to numerically simulate the transient multiphase flow field produced by an underwater gun. Furthermore, a visualized s...A two-dimensional axisymmetric model, employing a dynamic mesh and user-defined functions, is used to numerically simulate the transient multiphase flow field produced by an underwater gun. Furthermore, a visualized shooting experiment platform with a high-speed camera is built to observe the evolution process of such a multiphase flow field. The simulated phase distribution diagram is agreed well with the shadow photo of the experiment, indicating that the numerical model is reasonable. Further examinations of the multiphase flow fields by using the submerged and sealed launch methods show that use of the sealed launch can significantly improve the interior ballistic performance of an underwater gun. In the cases by using these two types of underwater launch methods, the displacement of the projectile within the range of the muzzle flow field meets the exponential law over time. Moreover, a not fully developed bottle-shaped shock wave is formed when t = 0.4 ms, but this bottle-shaped shock wave expands more rapidly for the sealed launch. In addition, the amplitude of pressure oscillation for the sealed launch is larger than that of the submerged launch, but the pressure oscillation of the sealed launch lasts shorter.展开更多
文摘When the high-pressure gas is exhausted to the vacuum chamber from the nozzle,the underexpanded supersonic jet contained with the Mach disk is generally formed.The eventual purpose of this study is to clarify the unsteady phenomenon of the underexpanded free jet when the back pressure continuously changes with time.The characteristic of the Mach disk has been clarified in consideration of the diameter and position of it by the numerical analysis in this paper.The sonic jet of the exit Mach number Me=1 is assumed and the axisymmetric conservational equation is solved by the TVD method in the numerical calculation.The diameter and position of the Mach disk differs with the results of a steady jet and the influence on the continuously changing of the back pressure is evidenced from the comparison with the case of steady supersonic jet.
文摘A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.
基金This work was supported by the National Natural Science Foundation of China(No.51906249)National Key R&D Program of China(No.2019YFE0191600)President Foundation of Hefei Institute of Physical Science,Chinese Academy of Sciences(No.YZJJ2019QN21).
文摘During a loss of vacuum accident(LOVA),the air ingress into a vacuum vessel(VV)may lead to radioactive dust resuspension,migration,and even explosion,thereby posing a great threat to the safe operation of future fusion reactors;thus,it is crucial to understand the flow characteristics and radioactive dust transport behavior induced by LOVA.However,only a few studies have identified the characteristics of the highly under-expanded jet flow at a scale of milliseconds during LOVA.Particularly,the occurrence and behavior of a Mach disk is yet to be captured in existing studies.In this study,we used a more advanced model with a finer mesh and adaptive mesh strategies to capture the Mach disk in a VV during LOVA.In detail,a computational fluid dynamics–discrete phase model one-way coupled multiphase approach was established using the computational fluid dynamics code ANSYS FLUENT and applied to the analysis during the first seconds of LOVA.The results showed that air ingress into the VV behaved like a highly free under-expanded jet at the initial stage and Mach disk was formed at~6 ms.Moreover,the flow field dramatically changed at the position of the Mach disk.The jet core before the Mach disk had a maximum velocity of~8 Mach with the corresponding lowest static pressure(~100 Pa)and temperature(few tens of K).The friction velocities in the lower part of the VV,which is an area of concern due to dust deposition,were generally larger than 15 m/s near the inlet region.Lastly,the crude prediction of the particle trajectories demonstrated the spiral trajectories of the dust following the air motion.Therefore,this study provided a basis for further safety analysis and accident prevention related to dust transport and explosion in future fusion reactors.
基金This work was supported by the National Natural Science Foundation of China(No.11372139)the China Postdoctoral Science Foundation(2020M681596).
文摘A two-dimensional axisymmetric model, employing a dynamic mesh and user-defined functions, is used to numerically simulate the transient multiphase flow field produced by an underwater gun. Furthermore, a visualized shooting experiment platform with a high-speed camera is built to observe the evolution process of such a multiphase flow field. The simulated phase distribution diagram is agreed well with the shadow photo of the experiment, indicating that the numerical model is reasonable. Further examinations of the multiphase flow fields by using the submerged and sealed launch methods show that use of the sealed launch can significantly improve the interior ballistic performance of an underwater gun. In the cases by using these two types of underwater launch methods, the displacement of the projectile within the range of the muzzle flow field meets the exponential law over time. Moreover, a not fully developed bottle-shaped shock wave is formed when t = 0.4 ms, but this bottle-shaped shock wave expands more rapidly for the sealed launch. In addition, the amplitude of pressure oscillation for the sealed launch is larger than that of the submerged launch, but the pressure oscillation of the sealed launch lasts shorter.