The principle and application of optical interferometry to measure the coating thickness of color-coated plates were introduced in this paper.Additionally,several factors affecting the test results,including coating r...The principle and application of optical interferometry to measure the coating thickness of color-coated plates were introduced in this paper.Additionally,several factors affecting the test results,including coating refractive index,wavelength range,and film thickness range setting,were analyzed.Among these,the refractive index of the color coating,which cannot be measured directly,was identified as the key factor.A solution to this problem was proposed.Finally,the optical interference method and the current detection methods,including the micrometer method and the magnetic eddy current method,were analyzed and compared.The results show that optical interferometry has better repeatability and reproducibility than the current methods and show no significant difference from the current methods through statistical tests.Therefore,the method can be applied to the detection of the coating thickness of color-coated plates.展开更多
High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional...High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations,and the technical difficulty increases rapidly as the wavelength decreases.The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations,but suffers from a narrow spectral bandwidth which results in a lack of effective photons.In this study,we propose optical synthetic aperture imaging based on spatial intensity interferometry.This not only realizes diffraction-limited optical aperture synthesis in a single shot,but also enables imaging with a wide spectral bandwidth,which greatly improves the optical energy efficiency of intensity interferometry.And this method is insensitive to the optical path difference between the sub-apertures.Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light,whose maximum optical path difference between the sub-apertures reaches 69λ.This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.展开更多
A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filte...A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.展开更多
The fundamental measurement of space gravitational wave detection is to monitor the relative motion between pairs of freely falling test masses using heterodyne laser interferometry to a precision of 10 pm. The masses...The fundamental measurement of space gravitational wave detection is to monitor the relative motion between pairs of freely falling test masses using heterodyne laser interferometry to a precision of 10 pm. The masses under test are millions of kilometers apart. The inter-spacecraft laser interferometry telescope deliver laser efficiently from one spacecraft to another. It is an important component of the gravitational wave detection observatory. It needs to meet the requirements of large compression ratio, high image quality and extraordinary stray light suppression ability. Based on the primary aberration theory, the method of the large compression ratio off-axis four-mirror optical system design is explored. After optimization, the system has an entrance pupil of 200 mm, compression ratio of 40 times, scientific field of view (FOV) of ±8 μrad. To facilitate suppressing the stray light and delivering the laser beam to the back-end scientific interferometers, the intermediate images and the real exit pupils are spatially available. Over the full FOV, the maximum root mean square (RMS) wavefront error is less than 0.007λ, PV value is less than 0.03λ (λ = 1064 nm). The image quality is approached to the diffraction-limit. The TTL noise caused by the wavefront error of the telescope is analyzed. The TTL noise in the image space of 300 μrad range is less than 1 × 10-10 m whose slope is lower than 0.6 μm/rad, which is under the noise budget of the laser interferometer space antenna (LISA), satisfying the requirements of space gravitational wave detection.展开更多
A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be use...A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure. Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy. PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid. The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of interferometer and using Fourier transform technique. The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.展开更多
Transparent objects are invisible to traditional cameras because they can only detect intensity fluctuations,necessitating the need for interferometry followed by computationally intensive digital image processing.Now...Transparent objects are invisible to traditional cameras because they can only detect intensity fluctuations,necessitating the need for interferometry followed by computationally intensive digital image processing.Now it is shown that the necessary transformations can be performed optically by combining machine learning and diffractive optics,for a direct in-situ measurement of transparent objects with conventional cameras.展开更多
A plasmonic Mach-Zehnder interferometric sensor based on a semicircular aperture-slit nanostructure patterned on a metal-insulator-metal film is proposed and demonstrated by finite difference time domain(FDTD) simul...A plasmonic Mach-Zehnder interferometric sensor based on a semicircular aperture-slit nanostructure patterned on a metal-insulator-metal film is proposed and demonstrated by finite difference time domain(FDTD) simulation. Due to the interference between two different surface plasmon polariton modes in this design, the transmission spectra exhibit oscillation behaviors in a broad bandwidth, and can be readily tailored by changing the SPP path length and core layer thickness. Based on this principle, the characteristics of refractive index sensing are also demonstrated by simulation. This structure is illuminated with a collimated light source from the back side to avoid impacts on the interference. Meanwhile,these results show that the proposed structure is promising for portable, efficient, and sensitive biosensing applications.展开更多
In order to detect the refractive index of liquid with high precision,based on modular interference,Mach-Zehnder optical fiber refractive rate sensor was studied.Sensor structure is composed of ordinary single-mode fi...In order to detect the refractive index of liquid with high precision,based on modular interference,Mach-Zehnder optical fiber refractive rate sensor was studied.Sensor structure is composed of ordinary single-mode fiber and multimode fiber,according to the singlemode multimode singlemode sequence to fuse together,and the fused optical fiber is used to process the taper.As a result,the diameter of the sensing head is about 10μm.Experimental results show that,as liquid refractive index increases range from 1.33 to 1.35,the loss peak of the transmission spectrum will shift to long wave direction.展开更多
Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high paralleliz...Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high parallelization,large bandwidth,and low power consumption to meet the demand of big data.Here,we demonstrate the dual-layer ONN with Mach-Zehnder interferometer(MZI)network and nonlinear layer,while the nonlinear activation function is achieved by optical-electronic signal conversion.Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN.We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution.Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN.This work provides a high-performance architecture for future parallel high-capacity optical analog computing.展开更多
Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and f...Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.展开更多
In this paper, the author analyzes characteristics and extracting method of interference signal of the distributed optical fiber sensing. In the distributed optical fiber sensing, realizing alarm and positioning funct...In this paper, the author analyzes characteristics and extracting method of interference signal of the distributed optical fiber sensing. In the distributed optical fiber sensing, realizing alarm and positioning function only through the cross-correlation operation will increase the load of the system, can make misinformation rate of the system be improved greatly. Therefore, before the localization algorithm, adding a interference signal feature recognition is very necessary, can reduce unnecessary operation loss and reduce the load of the system, also reducing the number of the false positives.展开更多
A nonlinearity-compensation-free optical frequency domain reflectometry(OFDR)scheme is proposed and experimentally demonstrated based on the electrically-controlled optical frequency sweep.In the proposed scheme,the l...A nonlinearity-compensation-free optical frequency domain reflectometry(OFDR)scheme is proposed and experimentally demonstrated based on the electrically-controlled optical frequency sweep.In the proposed scheme,the linear frequency sweep light is generated by propagating an ultra-narrow-linewidth continuous-wave(CW)light through an electro-optic frequency shifter which consists of a dual-parallel Mach-Zehnder modulator(DPMZM)and an electronic 90°hybrid,where the electro-optic frequency shifter is driven by a linear frequency modulated signal generated by a direct digital synthesizer(DDS).Experimental results show that the spatial resolution and signal-to-noise ratio(SNR)of the proposed OFDR scheme without the nonlinear phase compensation are comparable to those of OFDR employing a commercial tunable laser source(TLS),an auxiliary interferometer,and a software-based nonlinear phase compensation method.The proposed OFDR scheme is helpful to reduce the complexity of the optical structure and eliminate the difficulty of developing the nonlinear phase compensation algorithm.展开更多
In this paper, we describe the generation, detection, and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching. A non-return-to-zero (NRZ) FSK signal is generated by ...In this paper, we describe the generation, detection, and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching. A non-return-to-zero (NRZ) FSK signal is generated by using two continuous-wave (CW) lasers, one Mach-Zehnder modulator (MZM), and one Mach-Zehnder delay interferometer (MZDI). An RZ-FSK signal is generated by cascading a dual-arm MZM, which is driven by a sinusoidal voltage at half the bit rate. Demodulation can be achieved on 1 bit rate through one MZDI or an array waveguide grating (AWG) demultiplexer with balanced detection. We perform numerical simulation on two types of frequency modulation schemes using MZM or PM, and we determine the effect of frequency tone spacing (FTS) on the generated FSK signal. In the proposed scheme, a novel frequency modulation format has transmission advantages compared with traditional modulation formats such as RZ and differential phase-shift keying (DPSK), under varying dispersion management. The performance of an RZ-FSK signal in a 4 x 40 Gb/s WDM transmission system is discussed. We experiment on transparent wavelength conversion based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) and in a highly nonlinear dispersion shifted fiber (HNDSF) for a 40 Gb/s RZ-FSK signal. The feasibility of all-optical signal processing of a high-speed RZ-FSK signal is confirmed. We also determine the receiver power penalty for the RZ-FSK signal after a 100 km standard single-mode fiber (SMF) transmission link with matching dispersion compensating fiber (DCF), under the post-compensation management scheme. Because the frequency modulation format is orthogonal to intensity modulation and vector modulation (polarization shift keying), it can be used in the context of the combined modulation format to decrease the data rate or enhance the symbol rate. It can also be used in orthogonal label-switching as the modulation format for the payload or the label. As an example, we propose a simple orthogonal optical label switching technique based on 40 Gb/s FSK payload and 2.5 Gb/s intensity modulated (IM) label.展开更多
Utilizing reflection-based near-field scanning optical microscopy(NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuit...Utilizing reflection-based near-field scanning optical microscopy(NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuits. By raster scanning along the axis of a straight nano-waveguide in tapping mode and sweeping wavelength, detailed information of propagating waves in that waveguide has been extracted from analyses in both space and wavelength domains. Our technique needs no special steps for phase stabilization, thus allowing long-duration and environment-insensitive measurements. As a proof-of-concept test, in a silicon single-mode waveguide with a few of etched holes, the locations and reflection strengths of the inner defects have been quantified. The measurement uncertainty of the reflection amplitude is less than 25% at current stage. Our technique paves the way for non-destructively diagnosing photonic circuits on a chip with sub-wavelength spatial resolution and detailed information extraction.展开更多
Two-dimensional critical nozzle flows at low Reynolds numbers are visualized by the rainbow schlieren deflectometry. Experiments have been performed in a region of overexpanded nozzle flow. The variation of the shock ...Two-dimensional critical nozzle flows at low Reynolds numbers are visualized by the rainbow schlieren deflectometry. Experiments have been performed in a region of overexpanded nozzle flow. The variation of the shock structure against the back pressure ratio can be clearly visible with color gradation. Static pressure rises due to the shock-induced flow separation are compared with the previous theories. The unsteady characteristics of overexpanded critical nozzle flows at low Reynolds numbers are quantitatively and qualitatively visualized using laser schlieren and Mach-Zehnder interferometer systems combined with a high-speed digital camera. It was found that an oscillating normal shock wave appears inside the nozzle, and that the shock wave has a specified dominant frequency. Also the time-history of the oscillating shock wave is obtained from both the systems and compared with each other.展开更多
In this paper, we propose a new design of all fiber optical switches by using a high finesse ring resonator (RR) side coupled Mach-Zehnder interferometer. We will show that by compensating the total loss in the RR the...In this paper, we propose a new design of all fiber optical switches by using a high finesse ring resonator (RR) side coupled Mach-Zehnder interferometer. We will show that by compensating the total loss in the RR the switching power can be decreased greatly and by loss, compensating the bistability effect in RR can be cancelled and the switching performance can be improved. In addition, we will show that by using Erbium doped fiber for fabricating the RR we can obtain switching power threshold in mW range.展开更多
Fiber optic Fourier transform white-light inter-fereometry is presented to interrogate the absolute optical path difference of an Maeh-Zehnder interferometer. The phase change of the interferometer caused by scanning ...Fiber optic Fourier transform white-light inter-fereometry is presented to interrogate the absolute optical path difference of an Maeh-Zehnder interferometer. The phase change of the interferometer caused by scanning wavelength can be calculated by a Fourier transform-based phase demodulation technique. A linear output is achieved.展开更多
文摘The principle and application of optical interferometry to measure the coating thickness of color-coated plates were introduced in this paper.Additionally,several factors affecting the test results,including coating refractive index,wavelength range,and film thickness range setting,were analyzed.Among these,the refractive index of the color coating,which cannot be measured directly,was identified as the key factor.A solution to this problem was proposed.Finally,the optical interference method and the current detection methods,including the micrometer method and the magnetic eddy current method,were analyzed and compared.The results show that optical interferometry has better repeatability and reproducibility than the current methods and show no significant difference from the current methods through statistical tests.Therefore,the method can be applied to the detection of the coating thickness of color-coated plates.
基金supported by National Natural Foundation of China(Grant No.61991454)the project of CAS Interdisciplinary Innovation Team。
文摘High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations,and the technical difficulty increases rapidly as the wavelength decreases.The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations,but suffers from a narrow spectral bandwidth which results in a lack of effective photons.In this study,we propose optical synthetic aperture imaging based on spatial intensity interferometry.This not only realizes diffraction-limited optical aperture synthesis in a single shot,but also enables imaging with a wide spectral bandwidth,which greatly improves the optical energy efficiency of intensity interferometry.And this method is insensitive to the optical path difference between the sub-apertures.Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light,whose maximum optical path difference between the sub-apertures reaches 69λ.This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.
基金Project supported by the Innovation Program of Education Commission of Shanghai Municipality (Grant No.10YZ19)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Shanghai Key Laboratory of Specialty Fiber Optics and Optical Access Networks (Grant No.SKLSFO200903)
文摘A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.
文摘The fundamental measurement of space gravitational wave detection is to monitor the relative motion between pairs of freely falling test masses using heterodyne laser interferometry to a precision of 10 pm. The masses under test are millions of kilometers apart. The inter-spacecraft laser interferometry telescope deliver laser efficiently from one spacecraft to another. It is an important component of the gravitational wave detection observatory. It needs to meet the requirements of large compression ratio, high image quality and extraordinary stray light suppression ability. Based on the primary aberration theory, the method of the large compression ratio off-axis four-mirror optical system design is explored. After optimization, the system has an entrance pupil of 200 mm, compression ratio of 40 times, scientific field of view (FOV) of ±8 μrad. To facilitate suppressing the stray light and delivering the laser beam to the back-end scientific interferometers, the intermediate images and the real exit pupils are spatially available. Over the full FOV, the maximum root mean square (RMS) wavefront error is less than 0.007λ, PV value is less than 0.03λ (λ = 1064 nm). The image quality is approached to the diffraction-limit. The TTL noise caused by the wavefront error of the telescope is analyzed. The TTL noise in the image space of 300 μrad range is less than 1 × 10-10 m whose slope is lower than 0.6 μm/rad, which is under the noise budget of the laser interferometer space antenna (LISA), satisfying the requirements of space gravitational wave detection.
基金the Fundamental Research Foundation of Harbin Engineering University, (grant number HEUF 04017)
文摘A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure. Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy. PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid. The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of interferometer and using Fourier transform technique. The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.
文摘Transparent objects are invisible to traditional cameras because they can only detect intensity fluctuations,necessitating the need for interferometry followed by computationally intensive digital image processing.Now it is shown that the necessary transformations can be performed optically by combining machine learning and diffractive optics,for a direct in-situ measurement of transparent objects with conventional cameras.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51405240 and 61178044)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20161559)+1 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China(Grant No.16KJB510018)University Postgraduate Research and Innovation Project of Jiangsu Province,China(Grant No.KYLX16 1289)
文摘A plasmonic Mach-Zehnder interferometric sensor based on a semicircular aperture-slit nanostructure patterned on a metal-insulator-metal film is proposed and demonstrated by finite difference time domain(FDTD) simulation. Due to the interference between two different surface plasmon polariton modes in this design, the transmission spectra exhibit oscillation behaviors in a broad bandwidth, and can be readily tailored by changing the SPP path length and core layer thickness. Based on this principle, the characteristics of refractive index sensing are also demonstrated by simulation. This structure is illuminated with a collimated light source from the back side to avoid impacts on the interference. Meanwhile,these results show that the proposed structure is promising for portable, efficient, and sensitive biosensing applications.
基金National Natural Science Foundation of China(No.61405127)Shanxi Province Science Foundation for Youths(No.2014021023-1)+1 种基金Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi ProvinceProgram for Top Young Academic Leaders of Higher Learning Institutions in Shanxi Province
文摘In order to detect the refractive index of liquid with high precision,based on modular interference,Mach-Zehnder optical fiber refractive rate sensor was studied.Sensor structure is composed of ordinary single-mode fiber and multimode fiber,according to the singlemode multimode singlemode sequence to fuse together,and the fused optical fiber is used to process the taper.As a result,the diameter of the sensing head is about 10μm.Experimental results show that,as liquid refractive index increases range from 1.33 to 1.35,the loss peak of the transmission spectrum will shift to long wave direction.
基金Peng Xie acknowledges the support from the China Scholarship Council(Grant no.201804910829).
文摘Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high parallelization,large bandwidth,and low power consumption to meet the demand of big data.Here,we demonstrate the dual-layer ONN with Mach-Zehnder interferometer(MZI)network and nonlinear layer,while the nonlinear activation function is achieved by optical-electronic signal conversion.Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN.We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution.Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN.This work provides a high-performance architecture for future parallel high-capacity optical analog computing.
基金supported by the National Natural Science Foundation of China(Grant Nos.61177089,61227014,and 60978047)
文摘Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.
文摘In this paper, the author analyzes characteristics and extracting method of interference signal of the distributed optical fiber sensing. In the distributed optical fiber sensing, realizing alarm and positioning function only through the cross-correlation operation will increase the load of the system, can make misinformation rate of the system be improved greatly. Therefore, before the localization algorithm, adding a interference signal feature recognition is very necessary, can reduce unnecessary operation loss and reduce the load of the system, also reducing the number of the false positives.
基金the National Natural Science Foundation of China under Grants No.61927821 and No.61575037.
文摘A nonlinearity-compensation-free optical frequency domain reflectometry(OFDR)scheme is proposed and experimentally demonstrated based on the electrically-controlled optical frequency sweep.In the proposed scheme,the linear frequency sweep light is generated by propagating an ultra-narrow-linewidth continuous-wave(CW)light through an electro-optic frequency shifter which consists of a dual-parallel Mach-Zehnder modulator(DPMZM)and an electronic 90°hybrid,where the electro-optic frequency shifter is driven by a linear frequency modulated signal generated by a direct digital synthesizer(DDS).Experimental results show that the spatial resolution and signal-to-noise ratio(SNR)of the proposed OFDR scheme without the nonlinear phase compensation are comparable to those of OFDR employing a commercial tunable laser source(TLS),an auxiliary interferometer,and a software-based nonlinear phase compensation method.The proposed OFDR scheme is helpful to reduce the complexity of the optical structure and eliminate the difficulty of developing the nonlinear phase compensation algorithm.
基金supported by the National High Technology Research and Development Program(973)of China(Grant No.2010CB328300)National Natural Science Foundation of China(No.61107064,No.61177071,No.600837004,No.60777010)+1 种基金Doctoral Fund of Ministry of Education,Open Fund of State Key Lab of ASIC&System(No.11MS009)Pujiang Fund and Shuguang fund
文摘In this paper, we describe the generation, detection, and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching. A non-return-to-zero (NRZ) FSK signal is generated by using two continuous-wave (CW) lasers, one Mach-Zehnder modulator (MZM), and one Mach-Zehnder delay interferometer (MZDI). An RZ-FSK signal is generated by cascading a dual-arm MZM, which is driven by a sinusoidal voltage at half the bit rate. Demodulation can be achieved on 1 bit rate through one MZDI or an array waveguide grating (AWG) demultiplexer with balanced detection. We perform numerical simulation on two types of frequency modulation schemes using MZM or PM, and we determine the effect of frequency tone spacing (FTS) on the generated FSK signal. In the proposed scheme, a novel frequency modulation format has transmission advantages compared with traditional modulation formats such as RZ and differential phase-shift keying (DPSK), under varying dispersion management. The performance of an RZ-FSK signal in a 4 x 40 Gb/s WDM transmission system is discussed. We experiment on transparent wavelength conversion based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) and in a highly nonlinear dispersion shifted fiber (HNDSF) for a 40 Gb/s RZ-FSK signal. The feasibility of all-optical signal processing of a high-speed RZ-FSK signal is confirmed. We also determine the receiver power penalty for the RZ-FSK signal after a 100 km standard single-mode fiber (SMF) transmission link with matching dispersion compensating fiber (DCF), under the post-compensation management scheme. Because the frequency modulation format is orthogonal to intensity modulation and vector modulation (polarization shift keying), it can be used in the context of the combined modulation format to decrease the data rate or enhance the symbol rate. It can also be used in orthogonal label-switching as the modulation format for the payload or the label. As an example, we propose a simple orthogonal optical label switching technique based on 40 Gb/s FSK payload and 2.5 Gb/s intensity modulated (IM) label.
基金Project supported by National Key R&D Program of China(Grant No.2017YFA0303800)National Natural Science Foundation of China(Grant No.61575218)Defense Industrial Technology Development Program,China(Grant No.JCKY201601C006)
文摘Utilizing reflection-based near-field scanning optical microscopy(NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuits. By raster scanning along the axis of a straight nano-waveguide in tapping mode and sweeping wavelength, detailed information of propagating waves in that waveguide has been extracted from analyses in both space and wavelength domains. Our technique needs no special steps for phase stabilization, thus allowing long-duration and environment-insensitive measurements. As a proof-of-concept test, in a silicon single-mode waveguide with a few of etched holes, the locations and reflection strengths of the inner defects have been quantified. The measurement uncertainty of the reflection amplitude is less than 25% at current stage. Our technique paves the way for non-destructively diagnosing photonic circuits on a chip with sub-wavelength spatial resolution and detailed information extraction.
文摘Two-dimensional critical nozzle flows at low Reynolds numbers are visualized by the rainbow schlieren deflectometry. Experiments have been performed in a region of overexpanded nozzle flow. The variation of the shock structure against the back pressure ratio can be clearly visible with color gradation. Static pressure rises due to the shock-induced flow separation are compared with the previous theories. The unsteady characteristics of overexpanded critical nozzle flows at low Reynolds numbers are quantitatively and qualitatively visualized using laser schlieren and Mach-Zehnder interferometer systems combined with a high-speed digital camera. It was found that an oscillating normal shock wave appears inside the nozzle, and that the shock wave has a specified dominant frequency. Also the time-history of the oscillating shock wave is obtained from both the systems and compared with each other.
文摘In this paper, we propose a new design of all fiber optical switches by using a high finesse ring resonator (RR) side coupled Mach-Zehnder interferometer. We will show that by compensating the total loss in the RR the switching power can be decreased greatly and by loss, compensating the bistability effect in RR can be cancelled and the switching performance can be improved. In addition, we will show that by using Erbium doped fiber for fabricating the RR we can obtain switching power threshold in mW range.
基金supported by the Program for New Century Excellent Talents (NCET) in the University of China and National 863 Program under Grant No. 2008AA04Z406.
文摘Fiber optic Fourier transform white-light inter-fereometry is presented to interrogate the absolute optical path difference of an Maeh-Zehnder interferometer. The phase change of the interferometer caused by scanning wavelength can be calculated by a Fourier transform-based phase demodulation technique. A linear output is achieved.