期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Molecular insight into the GaP(110)-water interface using machine learning accelerated molecular dynamics
1
作者 Xue-Ting Fan Xiao-Jian Wen +1 位作者 Yong-Bin Zhuang Jun Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期239-247,I0006,共10页
GaP has been shown to be a promising photoelectrocatalyst for selective CO_(2)reduction to methanol.Due to the relevance of the interface structure to important processes such as electron/proton transfer,a detailed un... GaP has been shown to be a promising photoelectrocatalyst for selective CO_(2)reduction to methanol.Due to the relevance of the interface structure to important processes such as electron/proton transfer,a detailed understanding of the GaP(110)-water interfacial structure is of great importance.Ab initio molecular dynamics(AIMD)can be used for obtaining the microscopic information of the interfacial structure.However,the GaP(110)-water interface cannot converge to an equilibrated structure at the time scale of the AIMD simulation.In this work,we perform the machine learning accelerated molecular dynamics(MLMD)to overcome the difficulty of insufficient sampling by AIMD.With the help of MLMD,we unravel the microscopic information of the structure of the GaP(110)-water interface,and obtain a deeper understanding of the mechanisms of proton transfer at the GaP(110)-water interface,which will pave the way for gaining valuable insights into photoelectrocatalytic mechanisms and improving the performance of photoelectrochemical cells. 展开更多
关键词 PHOTOELECTROCATALYSIS GaP(110)-water interface machine learning accelerated molecular dynamics
下载PDF
Parallel Molecular Dynamics on the Connection Machines 被引量:1
2
作者 Daniel I. Okunbor 《Wuhan University Journal of Natural Sciences》 CAS 1996年第Z1期337-343,共7页
Abstract Abstract:We have demonstrated using vectorized parallel Lennard-Jones fluid program that vectorizing general-purpose parallel molecular package for simulating biomolecules which currently runs on the Connect... Abstract Abstract:We have demonstrated using vectorized parallel Lennard-Jones fluid program that vectorizing general-purpose parallel molecular package for simulating biomolecules which currently runs on the Connection Machine CM-5 using CMMD message passing would offer a significant improvement over 4 non-vectorized version. Our results indicate that the Lennard-Jones fluid program written in C*/CMNID is five times faster than the same program written in C/CMMD. 展开更多
关键词 Parallel Molecular dynamics on the Connection machines
下载PDF
THE DESIGN AND ANALYSIS OF VIBRATION STRUCTURE OF VERTICAL DYNAMIC BALANCING MACHINE 被引量:1
3
作者 LiDinggen CaoJiguang +1 位作者 WangJtmwen ChenChuanyao 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第2期172-182,共11页
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditiona... A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines. 展开更多
关键词 vertical dynamic balancing machine vibration structure static unbalance coupled unbalance modal analysis harmonic response analysis
下载PDF
A novel domain decomposition-based model for efficient dynamic predictions of large composite machine tools
4
作者 YU YangBo JI Yu Lei +2 位作者 CHEN YanRen XU Kun BI QingZhen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第6期1765-1782,共18页
We propose a large combined moving component composed of carbon fiber reinforced polymer(CFRP)laminates for making lightweight machine tools with high dynamic performance.The accurate dynamic prediction of composite m... We propose a large combined moving component composed of carbon fiber reinforced polymer(CFRP)laminates for making lightweight machine tools with high dynamic performance.The accurate dynamic prediction of composite machine tools is essential for the new generation machine tool.This paper aims to address two challenges in numerical dynamic modeling and the design of composite machine tools to enhance development efficiency.(1)Anisotropic composite laminates,which form the composite machine tool,exhibit coupling in various directions.We propose the generalized continuity condition of the boundary to tackle this dynamic modeling challenge.(2)Composite machine tools feature numerous composite-metal coupled structures.The mechanical model correction of isotropic metals is performed to address their dynamics.We take the example of a five-axis gantry machine tool with composite moving parts,establish a dynamic model for efficient prediction,and verify it through simulation and experimentation.The proposed method yields remarkable results,with an average relative error of only 3.85%in modal frequency prediction and a staggering 99.7%reduction in solution time compared to finite element analysis.We further discuss the dynamic performance of the machine tool under varied stacking angles and layer numbers of the composite machine tool.We propose general design criteria for composite machine tools to consider the modal frequency and manufacturing cost of machine tools. 展开更多
关键词 machine tool dynamics carbon fiber reinforced polymer composite laminates
原文传递
Modeling and Analytical Solution of Chatter Stability for T-slot Milling 被引量:8
5
作者 LI Zhongqun LIU Qiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期88-93,共6页
T-slot milling is one of the most common milling processes in industry. Despite recent advances in machining technology, productivity of T-slot milling is usually limited due to the process limitations such as high cu... T-slot milling is one of the most common milling processes in industry. Despite recent advances in machining technology, productivity of T-slot milling is usually limited due to the process limitations such as high cutting forces and stability. If cutting conditions are not selected properly the process may result in the poor surface finish of the workpiece and the potential damage to the machine tool. Currently, the predication of chatter stability and determination of optimal cutting conditions based on the modeling of T-slot milling process is an effective way to improve the material removal rate(MRR) of a T-slot milling operation. Based on the geometrical model of the T-slot cutter, the dynamic cutting force model was presented in which the average directional cutting force coefficients were obtained by means of numerical approach, and leads to an analytical determination of stability lobes diagram(SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut was also created to satisfy the special requirement of T-slot milling. Thereafter, a dynamic simulation model of T-slot milling was implemented using Matlab software. In order to verify the effectiveness of the approach, the transfer functions of a typical cutting system in a vertical CNC machining center were measured in both feed and normal directions by an instrumented hammer and accelerators. Dynamic simulations were conducted to obtain the predicated SLD under specified cutting conditions with both the proposed model and CutPro~. Meanwhile, a set of cutting trials were conducted to reveal whether the cutting process under specified cutting conditions is stable or not. Both the simulation comparison and experimental verification demonstrated that the satisfactory coincidence between the simulated, the predicted and the experimental results. The chatter-free T-slot milling with higher MRR can be achieved under the cutting conditions determined according to the SLD simulation. 展开更多
关键词 machining dynamics T-slot milling chatter vibration stability lobes diagram
下载PDF
ANALYSIS OF METHOD FOR DETERMINING AZIMUTH OF PRINCIPAL AXIS OF INERTIA BASED ON DYNAMIC BALANCE MEASUREMENT 被引量:3
6
作者 ZHAO Jun GUAN Yingzi QI Naiming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期530-533,共4页
The dynamic balance quality of a rotating object is an important factor to maintain the stability and accuracy for motion. The azimuth of the principal axis of inertia is a major sign of dynamic balance. A usual metho... The dynamic balance quality of a rotating object is an important factor to maintain the stability and accuracy for motion. The azimuth of the principal axis of inertia is a major sign of dynamic balance. A usual method is measuring moment of inertia matrix relative to some base coordinates on a rotary inertia machine so as to calculate the azimuth of principal axis of inertia, By using the measured unbalance results on the two trimmed planes on a vertical hard bearing double-plane dynamic balancing machine, the dimension and direction of couple unbalance can be found. An azimuth angle formula for the principal axis of inertia is derived and is solved by using unbalance quantities. The experiments indicate that method based on dynamic balancing measurement is proved rational and effective and has a fine precision. 展开更多
关键词 Dynamic balance machine Principal axis of inertia Azimuth
下载PDF
Dynamic torque response analysis of IPMSM in flux weakening region for HEV applications
7
作者 刘晓红 张幽彤 黄文卿 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期355-360,共6页
An over-modulation based vector control strategy for interior permanent magnet synchronous machine( IPMSM) is proposed and investigated. The strategy increases the reference flux weakening voltage to improve efficie... An over-modulation based vector control strategy for interior permanent magnet synchronous machine( IPMSM) is proposed and investigated. The strategy increases the reference flux weakening voltage to improve efficiency in flux weakening region of IPMSMwith the same dynamic torque response performance in standard SV Mtechnique. The relationship between dynamic torque performance and the reference flux weakening voltage is also discussed. In order to achieve fast and smooth shift process,the torque response must be less than 20 ms in the parallel hybrid electric vehicle( HEV),according to this,modeling and experimental studies were carried out. The results show that the proposed strategy can achieve the same dynamic and steady state torque performance with higher reference flux weakening voltage,which means higher efficiency. 展开更多
关键词 interior permanent magnet synchronous machine(IPMSM) over-modulation flux weakening dynamic torque response hybrid electric vehicle(HEV)
下载PDF
Use of inverse stability solutions for identification of uncertainties in the dynamics of machining processes 被引量:1
8
作者 Lutfi Taner Tunc Orkun Ozsahin 《Advances in Manufacturing》 SCIE CAS CSCD 2018年第3期308-318,共11页
Research on dynamics and stability of machin-ing operations has attracted considerable attention. Cur-rently, most studies focus on the forward solution ofdynamics and stability in which material properties and thefre... Research on dynamics and stability of machin-ing operations has attracted considerable attention. Cur-rently, most studies focus on the forward solution ofdynamics and stability in which material properties and thefrequency response function at the tool tip are known topredict stable cutting conditions. However, the forwardsolution may fail to perform accurately in cases whereinthe aforementioned information is partially known or var-ies based on the process conditions, or could involve sev-eral uncertainties in the dynamics. Under thesecircumstances, inverse stability solutions are immenselyuseful to identify the amount of variation in the effectivedamping or stiffness acting on the machining system. Inthis paper, the inverse stability solutions and their use forsuch purposes are discussed through relevant examples andcase studies. Specific areas include identification of processdamping at low cutting speeds and variations in spindledynamics at high rotational speeds. 展开更多
关键词 Inverse stability Machining dynamics Highspeed milling Process damping Spindle dynamics
原文传递
I-Neat:An Intelligent Framework for Adaptive Virtual Machine Consolidation 被引量:2
9
作者 Yanxin Liu Yao Zhao +3 位作者 Jian Dong Lianpeng Li Chunpei Wang Decheng Zuo 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第1期13-26,共14页
With the increasing use of cloud computing,high energy consumption has become one of the major challenges in cloud data centers.Virtual Machine(VM)consolidation has been proven to be an efficient way to optimize energ... With the increasing use of cloud computing,high energy consumption has become one of the major challenges in cloud data centers.Virtual Machine(VM)consolidation has been proven to be an efficient way to optimize energy consumption in data centers,and many research works have proposed to optimize VM consolidation.However,the performance of different algorithms is related with the characteristics of the workload and system status;some algorithms are suitable for Central Processing Unit(CPU)-intensive workload and some for web application workload.Therefore,an adaptive VM consolidation framework is necessary to fully explore the potential of these algorithms.Neat is an open-source dynamic VM consolidation framework,which is well integrated into OpenStack.However,it cannot conduct dynamic algorithm scheduling,and VM consolidation algorithms in Neat are few and basic,which results in low performance for energy saving and Service-Level Agreement(SLA)avoidance.In this paper,an Intelligent Neat framework(I-Neat)is proposed,which adds an intelligent scheduler using reinforcement learning and a framework manager to improve the usability of the system.The scheduler can select appropriate algorithms for the local manager from an algorithm library with many load detection algorithms.The algorithm library is designed based on a template,and in addition to the algorithms of Neat,I-Neat adds six new algorithms to the algorithm library.Furthermore,the framework manager helps users add self-defined algorithms to I-Neat without modifying the source code.Our experimental results indicate that the intelligent scheduler and these novel algorithms can effectively reduce energy consumption with SLA assurance. 展开更多
关键词 cloud computing dynamic Virtual machine(VM)consolidation Open Stack NEAT reinforcement learning
原文传递
A MACHINE OPERATOR OR A DYNAMIC STIMULATOR:—MAKE YOUR VIDEO CLASS INTERACTIVE 被引量:3
10
作者 Tian Juan National University of Defence and Technology Changsha,Hunan 《Chinese Journal of Applied Linguistics》 1999年第2期30-33,共4页
An analysis of the different types of interaction taking place during a video-class shows thatcommunicative methods stimulate the students’ language learning.Thus video becomes a useful languagelearning tool.
关键词 A machine OPERATOR OR A DYNAMIC STIMULATOR MAKE YOUR VIDEO CLASS INTERACTIVE
原文传递
Machining dynamics and chatters in micro-milling:A critical review on the state-of-the-art and future perspectives
11
作者 Qingshun BAI Peng WANG +2 位作者 Kai CHENG Liang ZHAO Yabo ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS 2024年第7期59-80,共22页
Micro-milling technology is widely applied in micro manufacturing,particularly for the fabrication of miniature and micro components.However,the chatters and machining dynamics related issues in micro-milling are ofte... Micro-milling technology is widely applied in micro manufacturing,particularly for the fabrication of miniature and micro components.However,the chatters and machining dynamics related issues in micro-milling are often the main challenges restricting its machining quality and productivity.Many research works have rendered that the machining dynamics and chatters in micro-milling are more complex compared with the conventional macro-milling process,likely because of the size effect and rigidity of the micro-milling system including the tooling,workpiece,process variables,materials involved,and the high-speed milling machines,and further their collective dynamic effects.Therefore,in this paper,the state of the art focusing on micro-milling chatters and dynamics related issues over the past years are comprehensively and critically reviewed to provide some insights for potential researchers and practitioners.Firstly,typical applications and the problems caused by the machining dynamics and chatters in micro-milling have been put forward in this paper.Then,the research on the underlying micro-cutting mechanics and dynamics,stability analysis,chatters detection,and chatter suppression are summarized critically.Furthermore,the underlying scientific and technological challenges are discussed particularly against typical precision engineering applications.Finally,the possible future directions and trends in research and development of micro-milling have been discussed. 展开更多
关键词 Micro-milling Machining dynamics Micro-cutting mechanics Stability lobe diagram(SLD) Chatters suppression Digital twin
原文传递
Kinetic Characteristics Analysis of Aircraft During Heavy Cargo Airdrop 被引量:3
12
作者 Jie Chen Cun-Bao Ma Dong Song 《International Journal of Automation and computing》 EI CSCD 2014年第3期313-319,共7页
Airdrop is the most important approach for crisis transaction and unexpected events, it is necessary to investigate the flight characteristics of transport aircraft during the dropping process. This paper mainly focus... Airdrop is the most important approach for crisis transaction and unexpected events, it is necessary to investigate the flight characteristics of transport aircraft during the dropping process. This paper mainly focuses on the stability, controllability and model simplification of large aircraft with heavy cargo airdrop. In this process, the primary elements which have impact on force and moment are studied theoretically, the role of cargo mass, moving parameters and other factors on dynamical characteristics have been assessed by simulation and analysis. And then the aircraft model simplification is completed for control system designing in future.All the work above shows that the parameters of cargo moving play a dominant role in flight characteristics and the flight equations can be simplified to reduce the design complexity. 展开更多
关键词 MODELING SIMULATION control of aircraft kinematics and dynamics of machines model reduction
原文传递
A review of recent advances in machining techniques of complex surfaces 被引量:1
13
作者 LI Xiang Fei HUANG Tao +4 位作者 ZHAO Huan ZHANG XiaoMing YAN SiJie DAI Xing DING Han 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第9期1915-1939,共25页
Complex surfaces are widely used in aerospace,energy,and national defense industries.As one of the major means of manufacturing such as complex surfaces,the multi-axis numerical control(NC)machining technique makes mu... Complex surfaces are widely used in aerospace,energy,and national defense industries.As one of the major means of manufacturing such as complex surfaces,the multi-axis numerical control(NC)machining technique makes much contribution.When the size of complex surfaces is large or the machining space is narrow,the multi-axis NC machining may not be a good choice because of its high cost and low dexterity.Robotic machining is a beneficial supplement to the NC machining.Since it has the advantages of large operating space,good dexterity,and easy to realize parallel machining,it is a promising technique to enhance the capability of traditional NC machining.However,whether it is the multi-axis NC machining or the robotic machining,owing to the complex geometric properties and strict machining requirements,high-efficiency and high-accuracy machining of complex surfaces has always been a great challenge and remains a cutting-edge problem in the current manufacturing field.In this paper,by surveying the machining of complex parts and large complex surfaces,the theory and technology of high-efficiency and high-accuracy machining of complex surfaces are reviewed thoroughly.Then,a series of typical applications are introduced to show the state-of-the-art on the machining of complex surfaces,especially the recently developed industrial software and equipment.Finally,the summary and prospect of the machining of complex surfaces are addressed.To the best of our knowledge,this may be the first attempt to systematically review the machining of complex surfaces by the multiaxis NC and robotic machining techniques,in order to promote the further research in related fields. 展开更多
关键词 complex surfaces multi-axis NC machining robotic machining machining dynamics and control process optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部