This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random d...Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately.展开更多
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su...The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.展开更多
A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tange...A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.展开更多
Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of...Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits.展开更多
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st...Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.展开更多
Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining...Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.展开更多
The lost information caused by feature interaction is restored by using auxiliary faces (AF) and virtual links (VL). The delta volume of the interacted features represented by concave attachable connected graph (CACG)...The lost information caused by feature interaction is restored by using auxiliary faces (AF) and virtual links (VL). The delta volume of the interacted features represented by concave attachable connected graph (CACG) can be decomposed into several isolated features represented by complete concave adjacency graph (CCAG). We can recognize the feature’s sketchy type by using CCAG as a hint; the exact type of the feature can be attained by deleting the auxiliary faces from the isolated feature. United machining feature (UMF) is used to represent the features that can be machined in the same machining process. It is important to the rationalizing of the process plans and reduce the time costing in machining. An example is given to demonstrate the effectiveness of this method.展开更多
The selection of machining parameters directly affects the production time,quality,cost,and other process performance measures for multi-pass milling.Optimization of machining parameters is of great significance.Howev...The selection of machining parameters directly affects the production time,quality,cost,and other process performance measures for multi-pass milling.Optimization of machining parameters is of great significance.However,it is a nonlinear constrained optimization problem,which is very difficult to obtain satisfactory solutions by traditional optimization methods.A new optimization technique combined chaotic operator and imperialist competitive algorithm(ICA)is proposed to solve this problem.The ICA simulates the competition between the empires.It is a population-based meta-heuristic algorithm for unconstrained optimization problems.Imperialist development operator based on chaotic sequence is introduced to improve the local search of ICA,while constraints handling mechanism is introduced and an imperialist-colony transformation policy is established.The improved ICA is called chaotic imperialist competitive algorithm(CICA).A case study of optimizing machining parameters for multi-pass face milling operations is presented to verify the effectiveness of the proposed method.The case is to optimize parameters such as speed,feed,and depth of cut in each pass have yielded a minimum total product ion cost.The depth of cut of optimal strategy obtained by CICA are 4 mm,3 mm,1 mm for rough cutting pass 1,rough cutting pass 1 and finish cutting pass,respectively.The cost for each pass are$0.5366 US,$0.4473 US and$0.3738 US.The optimal solution of CICA for various strategies with at=8 mm is$1.3576 US.The results obtained with the proposed schemes are better than those of previous work.This shows the superior performance of CICA in solving such problems.Finally,optimization of cutting strategy when the width of workpiece no smaller than the diameter of cutter is discussed.Conclusion can be drawn that larger tool diameter and row spacing should be chosen to increase cutting efficiency.展开更多
Aluminium metal matrix composites are finding increased applications in many areas. Adding of the third element to the metal matrix make the composite hybrid. This paper presents the study on the surface roughness cha...Aluminium metal matrix composites are finding increased applications in many areas. Adding of the third element to the metal matrix make the composite hybrid. This paper presents the study on the surface roughness characteristics of a hybrid aluminium metal matrix (Al6061-SiC-Al2O3) composites. The experimental studies were carried out on a lathe. The composites were prepared using the liquid metallurgy technique, in which 3, 6 and 9 wt % of particulates SiC and Al2O3 were dispersed in the base matrix. The obtained cast composites were carefully machined. The characteristics that influence the surface roughness such as feed rate, depth of cut and cutting speed were studied, which made the analysis come to a conclusion that the surface roughness is increases with the increase of feed rate and it reduces the surface roughness with the increase of cutting speed.展开更多
The present work aims at the microstructural characterization of TiAlZrN/ Al2O3 and TiAlZrN/Si3N4 coatings deposited via lateral rotating cathodes. The coatings were deposited using Lateral Rotating Cathodes (LARC) te...The present work aims at the microstructural characterization of TiAlZrN/ Al2O3 and TiAlZrN/Si3N4 coatings deposited via lateral rotating cathodes. The coatings were deposited using Lateral Rotating Cathodes (LARC) technology. The deposited coatings were studied for its cross sectional morphology using scanning electron microscopy. Energy Dispersive Spectrometry was also conducted along the cross section to determine the elemental composition. Micro Vickers hardness test was conducted to determine the hardness of the coatings. The scanning electron microscope images showed that TiAlZrN/Al2O3 coatings showed preferred columnar grain orientation with multilayered structure while TiAlZrN/Si3N4 coatings exhibit a dense grain structure. The TiAlZrN/Si3N4 coating shows a hardness of 31.58 GPa while TiAlZrN/Al2O3 coating shows a hardness of 25.40 GPa. Dry turning tests were performed on AISI 304 stainless steel. The TiAlZrN/Si3N4 coatings show reduced flank wear. Both the coatings even under severe cutting conditions impart surface roughness of less than 1.5 μm.展开更多
Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface int...Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided.展开更多
To achieve zero-defect production during computer numerical control(CNC)machining processes,it is imperative to develop effective diagnosis systems to detect anomalies efficiently.However,due to the dynamic conditions...To achieve zero-defect production during computer numerical control(CNC)machining processes,it is imperative to develop effective diagnosis systems to detect anomalies efficiently.However,due to the dynamic conditions of the machine and tooling during machining processes,the relevant diagnosis systems currently adopted in industries are incompetent.To address this issue,this paper presents a novel data-driven diagnosis system for anomalies.In this system,power data for condition monitoring are continuously collected during dynamic machining processes to support online diagnosis analysis.To facilitate the analysis,preprocessing mechanisms have been designed to de-noise,normalize,and align the monitored data.Important features are extracted from the monitored data and thresholds are defined to identify anomalies.Considering the dynamic conditions of the machine and tooling during machining processes,the thresholds used to identify anomalies can vary.Based on historical data,the values of thresholds are optimized using a fruit fly optimization(FFO)algorithm to achieve more accurate detection.Practical case studies were used to validate the system,thereby demonstrating the potential and effectiveness of the system for industrial applications.展开更多
To develop a hybrid process of abrasive jet machining (AJM) and electrical discharge machining (EDM),the effects of the hybrid process parameters on machining performance were comprehensively investigated to confirm t...To develop a hybrid process of abrasive jet machining (AJM) and electrical discharge machining (EDM),the effects of the hybrid process parameters on machining performance were comprehensively investigated to confirm the benefits of this hybrid process.The appropriate abrasives delivered by high speed gas media were incorporated with an EDM in gas system to construct the hybrid process of AJM and EDM,and then the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process to increase the efficiency of material removal and reduce the surface roughness.In this study,the benefits of the hybrid process were determined as the machining performance of hybrid process was compared with that of the EDM in gas system.The main process parameters were varied to explore their effects on material removal rate,surface roughness and surface integrities.The experimental results show that the hybrid process of AJM and EDM can enhance the machining efficiency and improve the surface quality.Consequently,the developed hybrid process can fit the requirements of modern manufacturing applications.展开更多
High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manu...High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.展开更多
The object is to investigate the wear of an atomic force microscope (AFM) diamond tip when conducting micro/nano machining on single crystal silicon surface. The experimental research and theoretical analysis were car...The object is to investigate the wear of an atomic force microscope (AFM) diamond tip when conducting micro/nano machining on single crystal silicon surface. The experimental research and theoretical analysis were carried out on the worn tip in terms of wear rate, wear mechanism and the effect of the tip wear on micro machining process. The wear rate was calculated as 1.7(10~10mm 3/(N·m) by using a theoretical model combined with the experimental results. Through an integration of an AFM observation on the worn tip features with the FEM simulation of the stress distribution, in addition to the unit cutting force calculation on the AFM diamond tip, the wear mechanism of the AFM diamond tip was concluded as mainly chemical wear, and the wear process was also elaborated as well.展开更多
From the analysis of helical characteristics, ideal geometric models of cutting edge and helical groove of nose burr are developed to realize the ideal geometric model of helical groove of nose burr, in terms of not o...From the analysis of helical characteristics, ideal geometric models of cutting edge and helical groove of nose burr are developed to realize the ideal geometric model of helical groove of nose burr, in terms of not only the shape of cutting edge being accurately machined but also rake angle and depth of groove in fall compliance with design requirements. The fundamental relationship of too-groove engagment for groove shaping and the complex formulas related are verified by the example of machining and its computer simulation.展开更多
Electric Discharge Machining (EDM) is one of the most efficiently employed non-traditional machining processes for cutting hard-to-cut materials, to geometrically complex shapes that are difficult to machine by conven...Electric Discharge Machining (EDM) is one of the most efficiently employed non-traditional machining processes for cutting hard-to-cut materials, to geometrically complex shapes that are difficult to machine by conventional machines. In the present work, an experimental investigation has been carried out to study the effect of pulsed current on material removal rate, electrode wear, surface roughness and diameteral overcut in corrosion resistant stainless steels viz., 316 L and 17-4 PH. The materials used for the work were machined with different electrode materials such as copper, copper-tungsten and graphite. It is observed that the output parameters such as material removal rate, electrode wear and surface roughness of EDM increase with increase in pulsed current. The results reveal that high material removal rate have been achieved with copper electrode whereas copper-tungsten yielded lower electrode wear, smooth surface finish and good dimensional accuracy.展开更多
The objective of our study is to investigate the effect of rapid solidification technology using melt spun process from melt on environmentally free machining Al-0.1Zn alloys with tin-bismuth as free machining constit...The objective of our study is to investigate the effect of rapid solidification technology using melt spun process from melt on environmentally free machining Al-0.1Zn alloys with tin-bismuth as free machining constituents. The main purpose of rapid solidification from melt is to have a high strength and thermal stability. Structural and thermal properties have been investigated by x-ray diffraction (XRD), scanning electron microscope (SEM) and differential scanning calorimetry (DSC) techniques. Tensile test machine is used to study the mechanical properties such as ultimate tensile strength, elastic constants, yield strength and critical shear stress for free machining alloys. We find?the best free machining aluminum alloy that has excellent machinability qualities is Al-0.1Zn-0.5Sn-0.54Bi melt spun alloy because it offers excellent mechanical properties. The highest values of tensile strength (431.5 MPa), yield strength (393.9 MPa), fracture strength (431.6 Mpa), toughness (15.8 × 106?J/m3) generated from Al-0.1Zn-0.5Sn-0.54Bi alloy to meet the needs of free machining aluminum alloy applications.展开更多
axis NC machining freeform surface with a flat end cutter can theoretically improve material removal rate and surface finish, but it is very difficult to generate a gouge free cutter location. A new method of gener...axis NC machining freeform surface with a flat end cutter can theoretically improve material removal rate and surface finish, but it is very difficult to generate a gouge free cutter location. A new method of generating optimal cutter path is proposed to define the effective radius of a flat end cutter and determine the optimal step forward distance and step over distance. Thereby improving the NC machining efficiency and quality of freeform surfaces.展开更多
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
基金Supported by Research Innovation Fund Project “Research on micro machining mechanism of fiber reinforced composites”(Grant No.HIT.NSRIF.2014055)of Harbin Institute of Technology,China
文摘Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately.
基金supported by the National Natural Science Foundation of China(Nos.52075255,92160301,52175415,52205475,and 92060203)。
文摘The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.
基金Supported by National Natural Science Foundation of China(Grant No.50875171)National Hi-tech Research and Development Program of China(863 Program,Grant No.2009AA04Z150)
文摘A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.
文摘Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits.
基金supported by the National Nat-ural Science Foundation of China(No.52203376)the National Key Research and Development Program of China(No.2023YFB3813200).
文摘Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.
基金supported by the National Key Research and Development Project of China (Grant No.2023YFB3407200)the National Natural Science Foundation of China (Grant Nos.52225506,52375430,and 52188102)the Program for HUST Academic Frontier Youth Team (Grant No.2019QYTD12)。
文摘Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.
文摘The lost information caused by feature interaction is restored by using auxiliary faces (AF) and virtual links (VL). The delta volume of the interacted features represented by concave attachable connected graph (CACG) can be decomposed into several isolated features represented by complete concave adjacency graph (CCAG). We can recognize the feature’s sketchy type by using CCAG as a hint; the exact type of the feature can be attained by deleting the auxiliary faces from the isolated feature. United machining feature (UMF) is used to represent the features that can be machined in the same machining process. It is important to the rationalizing of the process plans and reduce the time costing in machining. An example is given to demonstrate the effectiveness of this method.
基金supported by the National Natural Science Foundation of China under grant no.51705182.
文摘The selection of machining parameters directly affects the production time,quality,cost,and other process performance measures for multi-pass milling.Optimization of machining parameters is of great significance.However,it is a nonlinear constrained optimization problem,which is very difficult to obtain satisfactory solutions by traditional optimization methods.A new optimization technique combined chaotic operator and imperialist competitive algorithm(ICA)is proposed to solve this problem.The ICA simulates the competition between the empires.It is a population-based meta-heuristic algorithm for unconstrained optimization problems.Imperialist development operator based on chaotic sequence is introduced to improve the local search of ICA,while constraints handling mechanism is introduced and an imperialist-colony transformation policy is established.The improved ICA is called chaotic imperialist competitive algorithm(CICA).A case study of optimizing machining parameters for multi-pass face milling operations is presented to verify the effectiveness of the proposed method.The case is to optimize parameters such as speed,feed,and depth of cut in each pass have yielded a minimum total product ion cost.The depth of cut of optimal strategy obtained by CICA are 4 mm,3 mm,1 mm for rough cutting pass 1,rough cutting pass 1 and finish cutting pass,respectively.The cost for each pass are$0.5366 US,$0.4473 US and$0.3738 US.The optimal solution of CICA for various strategies with at=8 mm is$1.3576 US.The results obtained with the proposed schemes are better than those of previous work.This shows the superior performance of CICA in solving such problems.Finally,optimization of cutting strategy when the width of workpiece no smaller than the diameter of cutter is discussed.Conclusion can be drawn that larger tool diameter and row spacing should be chosen to increase cutting efficiency.
文摘Aluminium metal matrix composites are finding increased applications in many areas. Adding of the third element to the metal matrix make the composite hybrid. This paper presents the study on the surface roughness characteristics of a hybrid aluminium metal matrix (Al6061-SiC-Al2O3) composites. The experimental studies were carried out on a lathe. The composites were prepared using the liquid metallurgy technique, in which 3, 6 and 9 wt % of particulates SiC and Al2O3 were dispersed in the base matrix. The obtained cast composites were carefully machined. The characteristics that influence the surface roughness such as feed rate, depth of cut and cutting speed were studied, which made the analysis come to a conclusion that the surface roughness is increases with the increase of feed rate and it reduces the surface roughness with the increase of cutting speed.
文摘The present work aims at the microstructural characterization of TiAlZrN/ Al2O3 and TiAlZrN/Si3N4 coatings deposited via lateral rotating cathodes. The coatings were deposited using Lateral Rotating Cathodes (LARC) technology. The deposited coatings were studied for its cross sectional morphology using scanning electron microscopy. Energy Dispersive Spectrometry was also conducted along the cross section to determine the elemental composition. Micro Vickers hardness test was conducted to determine the hardness of the coatings. The scanning electron microscope images showed that TiAlZrN/Al2O3 coatings showed preferred columnar grain orientation with multilayered structure while TiAlZrN/Si3N4 coatings exhibit a dense grain structure. The TiAlZrN/Si3N4 coating shows a hardness of 31.58 GPa while TiAlZrN/Al2O3 coating shows a hardness of 25.40 GPa. Dry turning tests were performed on AISI 304 stainless steel. The TiAlZrN/Si3N4 coatings show reduced flank wear. Both the coatings even under severe cutting conditions impart surface roughness of less than 1.5 μm.
文摘Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided.
基金funding from the EU Smarter project(PEOPLE-2013-IAPP-610675)
文摘To achieve zero-defect production during computer numerical control(CNC)machining processes,it is imperative to develop effective diagnosis systems to detect anomalies efficiently.However,due to the dynamic conditions of the machine and tooling during machining processes,the relevant diagnosis systems currently adopted in industries are incompetent.To address this issue,this paper presents a novel data-driven diagnosis system for anomalies.In this system,power data for condition monitoring are continuously collected during dynamic machining processes to support online diagnosis analysis.To facilitate the analysis,preprocessing mechanisms have been designed to de-noise,normalize,and align the monitored data.Important features are extracted from the monitored data and thresholds are defined to identify anomalies.Considering the dynamic conditions of the machine and tooling during machining processes,the thresholds used to identify anomalies can vary.Based on historical data,the values of thresholds are optimized using a fruit fly optimization(FFO)algorithm to achieve more accurate detection.Practical case studies were used to validate the system,thereby demonstrating the potential and effectiveness of the system for industrial applications.
基金Project(NSC99-2212-E-252-006-MY3)Supported by National Science Council
文摘To develop a hybrid process of abrasive jet machining (AJM) and electrical discharge machining (EDM),the effects of the hybrid process parameters on machining performance were comprehensively investigated to confirm the benefits of this hybrid process.The appropriate abrasives delivered by high speed gas media were incorporated with an EDM in gas system to construct the hybrid process of AJM and EDM,and then the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process to increase the efficiency of material removal and reduce the surface roughness.In this study,the benefits of the hybrid process were determined as the machining performance of hybrid process was compared with that of the EDM in gas system.The main process parameters were varied to explore their effects on material removal rate,surface roughness and surface integrities.The experimental results show that the hybrid process of AJM and EDM can enhance the machining efficiency and improve the surface quality.Consequently,the developed hybrid process can fit the requirements of modern manufacturing applications.
文摘High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.
文摘The object is to investigate the wear of an atomic force microscope (AFM) diamond tip when conducting micro/nano machining on single crystal silicon surface. The experimental research and theoretical analysis were carried out on the worn tip in terms of wear rate, wear mechanism and the effect of the tip wear on micro machining process. The wear rate was calculated as 1.7(10~10mm 3/(N·m) by using a theoretical model combined with the experimental results. Through an integration of an AFM observation on the worn tip features with the FEM simulation of the stress distribution, in addition to the unit cutting force calculation on the AFM diamond tip, the wear mechanism of the AFM diamond tip was concluded as mainly chemical wear, and the wear process was also elaborated as well.
文摘From the analysis of helical characteristics, ideal geometric models of cutting edge and helical groove of nose burr are developed to realize the ideal geometric model of helical groove of nose burr, in terms of not only the shape of cutting edge being accurately machined but also rake angle and depth of groove in fall compliance with design requirements. The fundamental relationship of too-groove engagment for groove shaping and the complex formulas related are verified by the example of machining and its computer simulation.
文摘Electric Discharge Machining (EDM) is one of the most efficiently employed non-traditional machining processes for cutting hard-to-cut materials, to geometrically complex shapes that are difficult to machine by conventional machines. In the present work, an experimental investigation has been carried out to study the effect of pulsed current on material removal rate, electrode wear, surface roughness and diameteral overcut in corrosion resistant stainless steels viz., 316 L and 17-4 PH. The materials used for the work were machined with different electrode materials such as copper, copper-tungsten and graphite. It is observed that the output parameters such as material removal rate, electrode wear and surface roughness of EDM increase with increase in pulsed current. The results reveal that high material removal rate have been achieved with copper electrode whereas copper-tungsten yielded lower electrode wear, smooth surface finish and good dimensional accuracy.
文摘The objective of our study is to investigate the effect of rapid solidification technology using melt spun process from melt on environmentally free machining Al-0.1Zn alloys with tin-bismuth as free machining constituents. The main purpose of rapid solidification from melt is to have a high strength and thermal stability. Structural and thermal properties have been investigated by x-ray diffraction (XRD), scanning electron microscope (SEM) and differential scanning calorimetry (DSC) techniques. Tensile test machine is used to study the mechanical properties such as ultimate tensile strength, elastic constants, yield strength and critical shear stress for free machining alloys. We find?the best free machining aluminum alloy that has excellent machinability qualities is Al-0.1Zn-0.5Sn-0.54Bi melt spun alloy because it offers excellent mechanical properties. The highest values of tensile strength (431.5 MPa), yield strength (393.9 MPa), fracture strength (431.6 Mpa), toughness (15.8 × 106?J/m3) generated from Al-0.1Zn-0.5Sn-0.54Bi alloy to meet the needs of free machining aluminum alloy applications.
文摘axis NC machining freeform surface with a flat end cutter can theoretically improve material removal rate and surface finish, but it is very difficult to generate a gouge free cutter location. A new method of generating optimal cutter path is proposed to define the effective radius of a flat end cutter and determine the optimal step forward distance and step over distance. Thereby improving the NC machining efficiency and quality of freeform surfaces.