Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant r...Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed.展开更多
A method is developed for cyclic elastoplastic analysis acrossmicro/meso/macro scales which is effective forte quantitativetransition of physical variables and for evaluating the size effectsof microstruc- tures. By u...A method is developed for cyclic elastoplastic analysis acrossmicro/meso/macro scales which is effective forte quantitativetransition of physical variables and for evaluating the size effectsof microstruc- tures. By using the improved self-consistent schemeproposed by Fan and carrying out a delicate mesoscop- ic analysisbased on a shear-lag model, the size effects including the thicknessof hard and soft layers relative to the inclusion dimension areobtained on the overall elastoplastic responses of materials up to 50cycles. The dominant characteristics of the analysis are that thecharacteristic dimension of a microstructure such as The thickness ofthe layers and the inclusion dimension can be explicitly incorporatedinto the formulation.展开更多
Ligaments are densely connective soft tissues capable of maintaining stability and function of knee joint.As an important factor,the constitutive relation of ligament would affect its biomechanics and further play an ...Ligaments are densely connective soft tissues capable of maintaining stability and function of knee joint.As an important factor,the constitutive relation of ligament would affect its biomechanics and further play an essential role in the research on ligament injury,healing and treatment.The objective of this paper is to provide an overview of the current research on ligament constitutive relations on the macro,meso,and micro levels as well as the anatomy and histological structure of ligament.Some studies of biomechanical behaviors during ligament injury and healing periods have also been investigated.Based on the research on ligament constitutive relation in the past three decades,a discussion of some research perspectives is also presented,such as a validated accurate measuring method of in situ strain in ligament,a new constitutive relation involving the distribution of ultra-structural properties,and a rational estimation of ligament injury and healing process by the change of its ultra-structural or histological characteristics.展开更多
文摘Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed.
文摘A method is developed for cyclic elastoplastic analysis acrossmicro/meso/macro scales which is effective forte quantitativetransition of physical variables and for evaluating the size effectsof microstruc- tures. By using the improved self-consistent schemeproposed by Fan and carrying out a delicate mesoscop- ic analysisbased on a shear-lag model, the size effects including the thicknessof hard and soft layers relative to the inclusion dimension areobtained on the overall elastoplastic responses of materials up to 50cycles. The dominant characteristics of the analysis are that thecharacteristic dimension of a microstructure such as The thickness ofthe layers and the inclusion dimension can be explicitly incorporatedinto the formulation.
基金supported by the National Natural Science Foundation of China(No.51275267)
文摘Ligaments are densely connective soft tissues capable of maintaining stability and function of knee joint.As an important factor,the constitutive relation of ligament would affect its biomechanics and further play an essential role in the research on ligament injury,healing and treatment.The objective of this paper is to provide an overview of the current research on ligament constitutive relations on the macro,meso,and micro levels as well as the anatomy and histological structure of ligament.Some studies of biomechanical behaviors during ligament injury and healing periods have also been investigated.Based on the research on ligament constitutive relation in the past three decades,a discussion of some research perspectives is also presented,such as a validated accurate measuring method of in situ strain in ligament,a new constitutive relation involving the distribution of ultra-structural properties,and a rational estimation of ligament injury and healing process by the change of its ultra-structural or histological characteristics.